Lessons From Digital History’s Antecedents

The below is the transcript from my October 29 keynote presented to the Creativity and The City 1600-2000 conference in Amsterdam, titled “Punched-Card Humanities”. I survey historical approaches to quantitative history, how they relate to the nomothetic/idiographic divide, and discuss some lessons we can learn from past successes and failures. For ≈200 relevant references, see this Zotero folder.


Title Slide
Title Slide

I’m here to talk about Digital History, and what we can learn from its quantitative antecedents. If yesterday’s keynote was framing our mutual interest in the creative city, I hope mine will help frame our discussions around the bottom half of the poster; the eHumanities perspective.

Specifically, I’ve been delighted to see at this conference, we have a rich interplay between familiar historiographic and cultural approaches, and digital or eHumanities methods, all being brought to bear on the creative city. I want to take a moment to talk about where these two approaches meet.

Yesterday’s wonderful keynote brought up the complicated goal of using new digital methods to explore the creative city, without reducing the city to reductive indices. Are we living up to that goal? I hope a historical take on this question might help us move in this direction, that by learning from those historiographic moments when formal methods failed, we can do better this time.

Creativity Conference Theme
Creativity Conference Theme

Digital History is different, we’re told. “New”. Many of us know historians who used computers in the 1960s, for things like demography or cliometrics, but what we do today is a different beast.

Commenting on these early punched-card historians, in 1999, Ed Ayers wrote, quote, “the first computer revolution largely failed.” The failure, Ayers, claimed, was in part due to their statistical machinery not being up to the task of representing the nuances of human experience.

We see this rhetoric of newness or novelty crop up all the time. It cropped up a lot in pioneering digital history essays by Roy Rosenzweig and Dan Cohen in the 90s and 2000s, and we even see a touch of it, though tempered, in this conference’s theme.

In yesterday’s final discussion on uncertainty, Dorit Raines reminded us the difference between quantitative history in the 70s and today’s Digital History is that today’s approaches broaden our sources, whereas early approaches narrowed them.

Slide (r)evolution
Slide (r)evolution

To say “we’re at a unique historical moment” is something common to pretty much everyone, everywhere, forever. And it’s always a little bit true, right?

It’s true that every historical moment is unique. Unprecedented. Digital History, with its unique combination of public humanities, media-rich interests, sophisticated machinery, and quantitative approaches, is pretty novel.

But as the saying goes, history never repeats itself, but it rhymes. Each thread making up Digital History has a long past, and a lot of the arguments for or against it have been made many times before. Novelty is a convenient illusion that helps us get funding.

Not coincidentally, it’s this tension I’ll highlight today: between revolution and evolution, between breaks and continuities, and between the historians who care more about what makes a moment unique, and those who care more about what connects humanity together.

To be clear, I’m operating on two levels here: the narrative and the metanarrative. The narrative is that the history of digital history is one of continuities and fractures; the metanarrative is that this very tension between uniqueness and self-similarity is what swings the pendulum between quantitative and qualitative historians.

Now, my claim that debates over continuity and discontinuity are a primary driver of the quantitative/qualitative divide comes a bit out of left field — I know — so let me back up a few hundred years and explain.

Chronology
Chronology

Francis Bacon wrote that knowledge would be better understood if it were collected into orderly tables. His plea extended, of course, to historical knowledge, and inspired renewed interest in a genre already over a thousand years old: tabular chronology.

These chronologies were world histories, aligning the pasts of several regions which each reconned the passage of time differently.

Isaac Newton inherited this tradition, and dabbled throughout his life in establishing a more accurate universal chronology, aligning Biblical history with Greek legends and Egyptian pharoahs.

Newton brought to history the same mind he brought to everything else: one of stars and calculations. Like his peers, Newton relied on historical accounts of astronomical observations to align simultaneous events across thousands of miles. Kepler and Scaliger, among others, also partook in this “scientific history”.

Where Newton departed from his contemporaries, however, was in his use of statistics for sorting out history. In the late 1500s, the average or arithmetic mean was popularized by astronomers as a way of smoothing out noisy measurements. Newton co-opted this method to help him estimate the length of royal reigns, and thus the ages of various dynasties and kingdoms.

On average, Newton figured, a king’s reign lasted 18-20 years. If the history books record 5 kings, that means the dynasty lasted between 90 and 100 years.

Newton was among the first to apply averages to fill in chronologies, though not the first to apply them to human activities. By the late 1600s, demographic statistics of contemporary life — of births, burials and the like — were becoming common. They were ways of revealing divinely ordered regularities.

Incidentally, this is an early example of our illustrious tradition of uncritically appropriating methods from the natural sciences. See? We’ve all done it, even Newton!  

Joking aside, this is an important point: statistical averages represented divine regularities. Human statistics began as a means to uncover universal truths, and they continue to be employed in that manner. More on that later, though.

Musgrave Quote

Newton’s method didn’t quite pass muster, and skepticism grew rapidly on the whole prospect of mathematical history.

Criticizing Newton in 1782, for example, Samuel Musgrave argued, in part, that there are no discernible universal laws of history operating in parallel to the universal laws of nature. Nature can be mathematized; people cannot.

Not everyone agreed. Francesco Algarotti passionately argued that Newton’s calculation of average reigns, the application of math to history, was one of his greatest achievements. Even Voltaire tried Newton’s method, aligning a Chinese chronology with Western dates using average length of reigns.

Nomothetic / Idiographic
Nomothetic / Idiographic

Which brings us to the earlier continuity/discontinuity point: quantitative history stirs debate in part because it draws together two activities Immanuel Kant sets in opposition: the tendency to generalize, and the tendency to specify.

The tendency to generalize, later dubbed Nomothetic, often describes the sciences: extrapolating general laws from individual observations. Examples include the laws of gravity, the theory of evolution by natural selection, and so forth.

The tendency to specify, later dubbed Idiographic, describes, mostly, the humanities: understanding specific, contingent events in their own context and with awareness of subjective experiences. This could manifest as a microhistory of one parish in the French Revolution, a critical reading of Frankenstein focused on gender dynamics, and so forth.  

These two approaches aren’t mutually exclusive, and they frequently come in contact around scholarship of the past. Paleontologists, for example, apply general laws of biology and geology to tell the specific story of prehistoric life on Earth. Astronomers, similarly, combine natural laws and specific observations to trace to origins of our universe.

Historians have, with cyclically recurring intensity, engaged in similar efforts. One recent nomothetic example is that of cliodynamics: the practitioners use data and simulations to discern generalities such as why nations fail or what causes war. Recent idiographic historians associate more with the cultural and theoretical turns in historiography, often focusing on microhistories or the subjective experiences of historical actors.

Both tend to meet around quantitative history, but the conversation began well before the urge to quantify. They often fruitfully align and improve one another when working in concert; for example when the historian cites a common historical pattern in order to highlight and contextualize an event which deviates from it.

But more often, nomothetic and idiographic historians find themselves at odds. Newton extrapolated “laws” for the length of kings, and was criticized for thinking mathematics had any place in the domain of the uniquely human. Newton’s contemporaries used human statistics to argue for divine regularities, and this was eventually criticized as encroaching on human agency, free will, and the uniqueness of subjective experience.

Bacon Taxonomy
Bacon Taxonomy

I’ll highlight some moments in this debate, focusing on English-speaking historians, and will conclude with what we today might learn from foibles of the quantitative historians who came before.

Let me reiterate, though, that quantitative is not nomothetic history, but they invite each other, so I shouldn’t be ahistorical by dividing them.

Take Henry Buckle, who in 1857 tried to bridge the two-culture divide posed by C.P. Snow a century later. He wanted to use statistics to find general laws of human progress, and apply those generalizations to the histories of specific nations.

Buckle was well-aware of historiography’s place between nomothetic and idiographic cultures, writing: “it is the business of the historian to mediate between these two parties, and reconcile their hostile pretensions by showing the point at which their respective studies ought to coalesce.”

In direct response, James Froud wrote that there can be no science of history. The whole idea of Science and History being related was nonsensical, like talking about the colour of sound. They simply do not connect.

This was a small exchange in a much larger Victorian debate pitting narrative history against a growing interest in scientific history. The latter rose on the coattails of growing popular interest in science, much like our debates today align with broader discussions around data science, computation, and the visible economic successes of startup culture.

This is, by the way, contemporaneous with something yesterday’s keynote highlighted: the 19th century drive to establish ‘urban laws’.

By now, we begin seeing historians leveraging public trust in scientific methods as a means for political control and pushing agendas. This happens in concert with the rise of punched cards and, eventually, computational history. Perhaps the best example of this historical moment comes from the American Census in the late 19th century.

19C Map
19C Map

Briefly, a group of 19th century American historians, journalists, and census chiefs used statistics, historical atlases, and the machinery of the census bureau to publicly argue for the disintegration of the U.S. Western Frontier in the late 19th century.

These moves were, in part, made to consolidate power in the American West and wrestle control from the native populations who still lived there. They accomplished this, in part, by publishing popular atlases showing that the western frontier was so fractured that it was difficult to maintain and defend. 1

The argument, it turns out, was pretty compelling.

Hollerith Cards
Hollerith Cards

Part of what drove the statistical power and scientific legitimacy of these arguments was the new method, in 1890, of entering census data on punched cards and processing them in tabulating machines. The mechanism itself was wildly successful, and the inventor’s company wound up merging with a few others to become IBM. As was true of punched-card humanities projects through the time of Father Roberto Busa, this work was largely driven by women.

It’s worth pausing to remember that the history of punch card computing is also a history of the consolidation of government power. Seeing like a computer was, for decades, seeing like a state. And how we see influences what we see, what we care about, how we think.  

Recall the Ed Ayers quote I mentioned at the beginning of his talk. He said the statistical machinery of early quantitative historians could not represent the nuance of historical experience. That doesn’t just mean the math they used; it means the actual machinery involved.

See, one of the truly groundbreaking punch card technologies at the turn of the century was the card sorter. Each card could represent a person, or household, or whatever else, which is sort of legible one-at-a-time, but unmanageable in giant stacks.

Now, this is still well before “computers”, but machines were being developed which could sort these cards into one of twelve pockets based on which holes were punched. So, for example, if you had cards punched for people’s age, you could sort the stacks into 10 different pockets to break them up by age groups: 0-9, 10-19, 20-29, and so forth.

This turned out to be amazing for eyeball estimates. If your 20-29 pocket was twice as full as your 10-19 pocket after all the cards were sorted, you had a pretty good idea of the age distribution.

Over the next 50 years, this convenience would shape the social sciences. Consider demographics or marketing. Both developed in the shadow of punch cards, and both relied heavily on what’s called “segmentation”, the breaking of society into discrete categories based on easily punched attributes. Age ranges, racial background, etc. These would be used to, among other things, determine who was interested in what products.

They’d eventually use statistics on these segments to inform marketing strategies.

But, if you look at the statistical tests that already existed at the time, these segmentations weren’t always the best way to break up the data. For example, age flows smoothly between 0 and 100; you could easily contrive a statistical test to show that, as a person ages, she’s more likely to buy one product over another, over a set of smooth functions.

That’s not how it worked though. Age was, and often still is, chunked up into ten or so distinct ranges, and those segments were each analyzed individually, as though they were as distinct from one another as dogs and cats. That is, 0-9 is as related to 10-19 as it is to 80-89.

What we see here is the deep influence of technological affordances on scholarly practice, and it’s an issue we still face today, though in different form.

As historians began using punch cards and social statistics, they inherited, or appropriated, a structure developed for bureaucratic government processing, and were rightly soon criticized for its dehumanizing qualities.

Pearson Stats

Unsurprisingly, given this backdrop, historians in the first few decades of the 20th century often shied away from or rejected quantification.

The next wave of quantitative historians, who reached their height in the 1930s, approached the problem with more subtlety than the previous generations in the 1890s and 1860s.

Charles Beard’s famous Economic Interpretation of the Constitution of the United States used economic and demographic stats to argue that the US Constitution was economically motivated. Beard, however, did grasp the fundamental idiographic critique of quantitative history, claiming that history was, quote:

“beyond the reach of mathematics — which cannot assign meaningful values to the imponderables, immeasurables, and contingencies of history.”

The other frequent critique of quantitative history, still heard, is that it uncritically appropriates methods from stats and the sciences.

This also wasn’t entirely true. The slide behind me shows famed statistician Karl Pearson’s attempt to replicate the math of Isaac Newton that we saw earlier using more sophisticated techniques.

By the 1940s, Americans with graduate training in statistics like Ernest Rubin were actively engaging historians in their own journals, discussing how to carefully apply statistics to historical research.

On the other side of the channel, the French Annales historians were advocating longue durée history; a move away from biographies to prosopographies, from events to structures. In its own way, this was another historiography teetering on the edge between the nomothetic and idiographic, an approach that sought to uncover the rhymes of history.

Interest in quantitative approaches surged again in the late 1950s, led by a new wave of Annales historians like Fernand Braudel and American quantitative manifestos like those by Benson, Conrad, and Meyer.

William Aydolette went so far as to point out that all historians implicitly quantify, when they use words like “many”, “average”, “representative”, or “growing” – and the question wasn’t can there be quantitative history, but when should formal quantitative methods be utilized?

By 1968, George Murphy, seeing the swell of interest, asked a very familiar question: why now? He asked why the 1960s were different from the 1860s or 1930s, why were they, in that historical moment, able to finally do it right? His answer was that it wasn’t just the new technologies, the huge datasets, the innovative methods: it was the zeitgeist. The 1960s was the right era for computational history, because it was the era of computation.

By the early 70s, there was a historian using a computer in every major history department. Quantitative history had finally grown into itself.

Popper Historicism
Popper Historicism

Of course, in retrospect, Murphy was wrong. Once the pendulum swung too far towards scientific history, theoretical objections began pushing it the other way.

In Poverty of Historicism, Popper rejected scientific history, but mostly as a means to reject historicism outright. Popper’s arguments represent an attack from outside the historiographic tradition, but one that eventually had significant purchase even among historians, as an indication of the failure of nomothetic approaches to culture. It is, to an extent, a return to Musgrave’s critique of Isaac Newton.

At the same time, we see growing criticism from historians themselves. Arthur Schlesinger famously wrote that “important questions are important precisely because they are not susceptible to quantitative answers.”

There was a converging consensus among English-speaking historians, as in the early 20th century, that quantification erased the essence of the humanities, that it smoothed over the very inequalities and historical contingencies we needed to highlight.

Barzun's Clio
Barzun’s Clio

Jacques Barzun summed it up well, if scathingly, saying history ought to free us from the bonds of the machine, not feed us into it.

The skeptics prevailed, and the pendulum swung the other way. The post-structural, cultural, and literary-critical turns in historiography pivoted away from quantification and computation. The final nail was probably Fogel and Engerman’s 1974 Time on the Cross, which reduced the Atlantic  slave-trade to economic figures, and didn’t exactly treat the subject with nuance and care.

The cliometricians, demographers, and quantitative historians didn’t disappear after the cultural turn, but their numbers shrunk, and they tended to find themselves in social science departments, or fled here to Europe, where social and economic historians were faring better.

Which brings us, 40 years on, to the middle of a new wave of quantitative or “formal method” history. Ed Ayers, like George Murphy before him, wrote, essentially, this time it’s different.

And he’s right, to a point. Many here today draw their roots not to the cliometricians, but to the very cultural historians who rejected quantification in the first place. Ours is a digital history steeped in the the values of the cultural turn, that respects social justice and seeks to use our approaches to shine a light on the underrepresented and the historically contingent.

But that doesn’t stop a new wave of critiques that, if not repeating old arguments, certainly rhymes. Take Johanna Drucker’s recent call to rebrand data as capta, because when we treat observations objectively as if it were the same as the phenomena observed, we collapse the critical distance between the world and our interpretation of it. And interpretation, Drucker contends, is the foundation on which humanistic knowledge is based.

Which is all to say, every swing of the pendulum between idiographic and nomothetic history was situated in its own historical moment. It’s not a clock’s pendulum, but Foucault’s pendulum, with each swing’s apex ending up slightly off from the last. The issues of chronology and astronomy are different from those of eugenics and manifest destiny, which are themselves different from the capitalist and dehumanizing tendencies of 1950s mainframes.

But they all rhyme. Quantitative history has failed many times, for many reasons, but there are a few threads that bind them which we can learn from — or, at least, a few recurring mistakes we can recognize in ourselves and try to avoid going forward.

We won’t, I suspect, stop the pendulum’s inevitable about-face, but at least we can continue our work with caution, respect, and care.

Which is to be Master?
Which is to be Master?

The lesson I’d like to highlight may be summed up in one question, asked by Humpty Dumpty to Alice: which is to be master?

Over several hundred years of quantitative history, the advice of proponents and critics alike tends to align with this question. Indeed in 1956, R.G. Collingwood wrote specifically “statistical research is for the historian a good servant but a bad master,” referring to the fact that statistical historical patterns mean nothing without historical context.

Schlesinger, the guy who I mentioned earlier who said historical questions are interesting precisely because they can’t be quantified, later acknowledged that while quantitative methods can be useful, they’ll lead historians astray. Instead of tackling good questions, he said, historians will tackle easily quantifiable ones — and Schlesinger was uncomfortable by the tail wagging the dog.

Which is to be master - questions
Which is to be master – questions

I’ve found many ways in which historians have accidentally given over agency to their methods and machines over the years, but these five, I think, are the most relevant to our current moment.

Unfortunately since we running out of time, you’ll just have to trust me that these are historically recurring.

Number 1 is the uncareful appropriation of statistical methods for historical uses. It controls us precisely because it offers us a black box whose output we don’t truly understand.

A common example I see these days is in network visualizations. People visualize nodes and edges using what are called force-directed layouts in Gephi, but they don’t exactly understand what those layouts mean. As these layouts were designed, physical proximity of nodes are not meant to represent relatedness, yet I’ve seen historians interpret two neighboring nodes as being related because of their visual adjacency.

This is bad. It’s false. But because we don’t quite understand what’s happening, we get lured by the black box into nonsensical interpretations.

The second way methods drive us is in our reliance on methodological imports. That is, we take the time to open the black box, but we only use methods that we learn from statisticians or scientists. Even when we fully understand the methods we import, if we’re bound to other people’s analytic machinery, we’re bound to their questions and biases.

Take the example I mentioned earlier, with demographic segmentation, punch card sorters, and its influence on social scientific statistics. The very mechanical affordances of early computers influence the sort of questions people asked for decades: how do discrete groups of people react to the world in different ways, and how do they compare with one another?

The next thing to watch out for is naive scientism. Even if you know the assumptions of your methods, and you develop your own techniques for the problem at hand, you still can fall into the positivist trap that Johanna Drucker warns us about — collapsing the distance between what we observe and some underlying “truth”.

This is especially difficult when we’re dealing with “big data”. Once you’re working with so much material you couldn’t hope to read it all, it’s easy to be lured into forgetting the distance between operationalizations and what you actually intend to measure.

For instance, if I’m finding friendships in Early Modern Europe by looking for particular words being written in correspondences, I will completely miss the existence of friends who were neighbors, and thus had no reason to write letters for us to eventually read.

A fourth way we can be mislead by quantitative methods is the ease with which they lend an air of false precision or false certainty.

This is the problem Matthew Lincoln and the other panelists brought up yesterday, where missing or uncertain data, once quantified, falsely appears precise enough to make comparisons.

I see this mistake crop up in early and recent quantitative histories alike; we measure, say, the changing rate of transnational shipments over time, and notice a positive trend. The problem is the positive difference is quite small, easily attributable to error, but because numbers are always precise, it still feels like we’re being more precise than doing a qualitative assessment. Even when it’s unwarranted.

The last thing to watch out for, and maybe the most worrisome, is the blinders quantitative analysis places on historians who don’t engage in other historiographic methods. This has been the downfall of many waves of quantitative history in the past; the inability to care about or even see that which can’t be counted.

This was, in part, was what led Time on the Cross to become the excuse to drive historians from cliometrics. The indicators of slavery that were measurable were sufficient to show it to have some semblance of economic success for black populations; but it was precisely those aspects of slavery they could not measure that were the most historically important.

So how do we regain mastery in light of these obstacles?

Which is to be master - answers
Which is to be master – answers

1. Uncareful Appropriation – Collaboration

Regarding the uncareful appropriation of methods, we can easily sidestep the issue of accidentally misusing a method by collaborating with someone who knows how the method works. This may require a translator; statisticians can as easily misunderstand historical problems as historians can misunderstand statistics.

Historians and statisticians can fruitfully collaborate, though, if they have someone in the middle trained to some extent in both — even if they’re not themselves experts. For what it’s worth, Dutch institutions seem to be ahead of the game in this respect, which is something that should be fostered.

2. Reliance on Imports – Statistical Training

Getting away from reliance on disciplinary imports may take some more work, because we ourselves must learn the approaches well enough to augment them, or create our own. Right now in DH this is often handled by summer institutes and workshop series, but I’d argue those are not sufficient here. We need to make room in our curricula for actual methods courses, or even degrees focused on methodology, in the same fashion as social scientists, if we want to start a robust practice of developing appropriate tools for our own research.

3. Naive Scientism – Humanities History

The spectre of naive scientism, I think, is one we need to be careful of, but we are also already well-equipped to deal with it. If we want to combat the uncareful use of proxies in digital history, we need only to teach the history of the humanities; why the cultural turn happened, what’s gone wrong with positivistic approaches to history in the past, etc.

Incidentally, I think this is something digital historians already guard well against, but it’s still worth keeping in mind and making sure we teach it. Particularly, digital historians need to remain aware of parallel approaches from the past, rather than tracing their background only to the textual work of people like Roberto Busa in Italy.

4. False Precision & Certainty – Simulation & Triangulation

False precision and false certainty have some shallow fixes, and some deep ones. In the short term, we need to be better about understanding things like confidence intervals and error bars, and use methods like what Matthew Lincoln highlighted yesterday.

In the long term, though, digital history would do well to adopt triangulation strategies to help mitigate against these issues. That means trying to reach the same conclusion using multiple different methods in parallel, and seeing if they all agree. If they do, you can be more certain your results are something you can trust, and not just an accident of the method you happened to use.

5. Quantitative Blinders – Rejecting Digital History

Avoiding quantitative blinders – that is, the tendency to only care about what’s easily countable – is an easy fix, but I’m afraid to say it, because it might put me out of a job. We can’t call what we do digital history, or quantitative history, or cliometrics, or whatever else. We are, simply, historians.

Some of us use more quantitative methods, and some don’t, but if we’re not ultimately contributing to the same body of work, both sides will do themselves a disservice by not bringing every approach to bear in the wide range of interests historians ought to pursue.

Qualitative and idiographic historians will be stuck unable to deal with the deluge of material that can paint us a broader picture of history, and quantitative or nomothetic historians will lose sight of the very human irregularities that make history worth studying in the first place. We must work together.

If we don’t come together, we’re destined to remain punched-card humanists – that is, we will always be constrained and led by our methods, not by history.

Creativity Theme Again
Creativity Theme Again

Of course, this divide is a false one. There are no purely quantitative or purely qualitative studies; close-reading historians will continue to say things like “representative” or “increasing”, and digital historians won’t start publishing graphs with no interpretation.

Still, silos exist, and some of us have trouble leaving the comfort of our digital humanities conferences or our “traditional” history conferences.

That’s why this conference, I think, is so refreshing. It offers a great mix of both worlds, and I’m privileged and thankful to have been able to attend. While there are a lot of lessons we can still learn from those before us, from my vantage point, I think we’re on the right track, and I look forward to seeing more of those fruitful combinations over the course of today.

Thank you.

Notes:

  1. This account is influenced from some talks by Ben Schmidt. Any mistakes are from my own faulty memory, and not from his careful arguments.

Connecting the Dots

This is the incredibly belated transcript of my HASTAC 2015 keynote. Many thanks to the organizers for inviting me, and to my fellow participants for all the wonderful discussions. The video and slides are also online. You can find citations to some of the historical illustrations and many of my intellectual inspirations here. What I said and what I wrote probably don’t align perfectly.

When you’re done reading this, you should read Roopika Risam’s closing keynote, which connects surprisingly well with this, though we did not plan it.


If you take a second to expand and disentangle “HASTAC”, you get a name of an organization that doubles as a fairly strong claim about the world: that Humanities, Arts, Science, and Technology are separate things, that they probably aren’t currently in alliance with one another, and that they ought to form an alliance.

This intention is reinforced in the theme of this year’s conference: “The Art and Science of Digital Humanities.” Here again we get the four pillars: humanities, arts, science, and technology. In fact, bear with me as I read from the CFP:

We welcome sessions that address, exemplify, and interrogate the interdisciplinary nature of DH work. HASTAC 2015 challenges participants to consider how the interplay of science, technology, social sciences, humanities, and arts are producing new forms of knowledge, disrupting older forms, challenging or reifying power relationships, among other possibilities.

Here again is that implicit message: disciplines are isolated, and their interplay can somehow influence power structures. As with a lot of digital humanities and cultural studies, there’s also a hint of activism: that building intentional bridges is a beneficial activity, and we’re organizing the community of HASTAC around this goal.

hastac-outline

This is what I’ll be commenting on today. First, what does disciplinary isolation mean? I put this historically, and argue that we must frame disciplinary isolation in a rhetorical context.

This brings me to my second point about ontology. It turns out the way we talk about isolation is deeply related to the way we think about knowledge, the way we illustrate it, and ultimately the shape of knowledge itself. That’s ontology.

My third point brings us back to HASTAC: that we represent an intentional community, and this intent is to build bridges which positively affect the academy and the world.

I’ll connect these three strands by arguing that we need a map to build bridges, and we need to carefully think about the ontology of knowledge to draw that map. And once we have a map, we can use it to design a better territory.

In short, this plenary is a call-to-action. It’s my vocal support for an intentionally improved academy, my exploration of its historical and rhetorical underpinnings, and my suggestions for affecting positive change in the future.

PhDKnowledge.002[1]
Matt Might’s Illustrated Guide to the Ph.D.
Let’s begin at the beginning. With isolation.

Stop me if you’ve heard this one before:

Within this circle is the sum of all human knowledge. It’s nice, it’s enclosed, it’s bounded. It’s a comforting thought, that everything we’ve ever learned or created sits comfortably inside these boundaries.

This blue dot is you, when you’re born. It’s a beautiful baby picture. You’ve got the whole world ahead of you, an entire universe to learn, just waiting. You’re at the center because you have yet to reach your proverbial hand out in any direction and begin to learn.

Matt Might's Illustrated Guide to the Ph.D.
Matt Might’s Illustrated Guide to the Ph.D.

But time passes and you grow. You go to highschool, you take your liberal arts and sciences, and you slowly expand your circle into the great known. Rounding out your knowledge, as it were.

Then college happens! Oh, those heady days of youth. We all remember it, when the shape of our knowledge started leaning tumorously to one side. The ill-effects of specialization and declaring a major, I suspect.

As you complete a master’s degree, your specialty pulls your knowledge inexorably towards the edge of the circle of the known. You’re not a jack of all trades anymore. You’re an expert.

http://matt.might.net/articles/phd-school-in-pictures/
Matt Might’s Illustrated Guide to the Ph.D.

Then your PhD advisor yells at you to focus and get even smaller. So you complete your qualifying exams and reach the edge of what’s known. What lies beyond the circle? Let’s zoom in and see!

Matt Might's Illustrated Guide to the Ph.D.
Matt Might’s Illustrated Guide to the Ph.D.

You’ve reached the edge. The end of the line. The sum of all human knowledge stops here. If you want to go further, you’ll need to come up with something new. So you start writing your dissertation.

That’s your PhD. Right there, at the end of the little arrow.

You did it. Congratulations!

You now know more about less than anybody else in the world. You made a dent in the circle, you pushed human knowledge out just a tiny bit further, and all it cost you was your mental health, thirty years of your life, and the promise of a certain future. …Yay?

PhDKnowledge.012[1]
Matt Might’s Illustrated Guide to the Ph.D.
So here’s the new world that you helped build, the new circle of knowledge. With everyone in this room, I bet we’ve managed to make a lot of dents. Maybe we’ve even managed to increase the circle’s radius a bit!

Now, what I just walked us all through is Matt Might’s illustrated guide to the Ph.D. It made its rounds on the internet a few years back, it was pretty popular.

And, though I’m being snarky about it, it’s a pretty uplifting narrative. It provides that same dual feeling of insignificance and importance that you get when you stare at the Hubble Ultra Deep Field. You know the picture, right?

Hubble Ultra Deep Field
Hubble Ultra Deep Field

There are 10,000 galaxies on display here, each with a hundred billion stars. To think that we, humans, from our tiny vantage point on Earth, could see so far and so much because of the clever way we shape glass lenses? That’s really cool.

And saying that every pinprick of light we see is someone else’s PhD? Well, that’s a pretty fantastic metaphor. Makes getting the PhD seem worth it, right?

Dante and the Early Astronomers; M. A. Orr (Mrs. John Evershed), 1913
Dante and the Early Astronomers; M. A. Orr (Mrs. John Evershed), 1913

It kinda reminds me of the cosmological theories of some of our philosophical ancestors.

The cosmos (Greek for “Order”), consisted of concentric, perfectly layered spheres, with us at the very center.

The cosmos was bordered by celestial fire, the light from heaven, and stars were simply pin-pricks in a dark curtain which let the heavenly light shine through.

Flammarion
Flammarion

So, if we beat Matt Might’s PhD metaphor to death, each of our dissertations are poking holes in the cosmic curtain, letting the light of heaven shine through. And that’s a beautiful thought, right? Enough pinpricks, and we’ll all be bathed in light.

Expanding universe.
Expanding universe.

But I promised we’d talk about isolation, and even if we have to destroy this metaphor to get there, we’ll get there.

The universe is expanding. That circle of knowledge we’re pushing the boundaries of? It’s getting bigger too. And as it gets larger, things that were once close get further and further apart. You and I and Alpha Centauri were all neighbors for the big bang, but things have changed since then, and the star that was once our neighbor is now 5 light years away.

Atlas of Science, Katy Borner (2010).
Atlas of Science, Katy Borner (2010).

In short, if we’re to take Matt Might’s PhD model as accurate, then the result of specialization is inexorable isolation. Let’s play this out.

Let’s say two thousand years ago, a white dude from Greece invented science. He wore a beard.

[Note for readers: the following narrative is intentionally awful. Read on and you’ll see why.]

Untitled-3

He and his bearded friends created pretty much every discipline we’re familiar with at Western universities: biology, cosmology, linguistics, philosophy, administration, NCAA football, you name it.

Over time, as Ancient Greek beards finished their dissertations, the boundaries of science expanded in every direction. But the sum of human knowledge was still pretty small back then, so one beard could write many dissertations, and didn’t have to specialize in only one direction. Polymaths still roamed the earth.

Untitled-3

Fast forward a thousand years or so. Human knowledge had expanded in the interim, and the first European universities branched into faculties: theology, law, medicine, arts.

Another few hundred years, and we’ve reached the first age of information overload. It’s barely possible to be a master of all things, and though we remember scholars and artists known for their amazing breadth, this breadth is becoming increasingly difficult to manage.

We begin to see the first published library catalogs, since the multitude of books required increasingly clever and systematic cataloging schemes. If you were to walk through Oxford in 1620, you’d see a set of newly-constructed doors with signs above them denoting their disciplinary uses: music, metaphysics, history, moral philosophy, and so on.

The encyclopedia of Diderot & D'alembert
The encyclopedia of Diderot & D’alembert

Time goes on a bit further, the circle of knowledge expands, and specialization eventually leads to fracturing.

We’ve reached the age of these massive hierarchical disciplinary schemes, with learning branching in every direction. Our little circle has become unmanageable.

A few more centuries pass. Some German universities perfect the art of specialization, and they pass it along to everyone else, including the American university system.

Within another 50 years, CP Snow famously invoked the “Two Cultures” of humanities and sciences.

And suddenly here we are

Untitled-3

On the edge of our circle, pushing outward, with every new dissertation expanding our radius, and increasing the distance to our neighbors.

Basically, the inevitable growth of knowledge results in an equally inevitable isolation. This is the culmination of super-specialization: a world where the gulf between disciplines is impossible to traverse, filled with language barriers, value differences, and intellectual incommensurabilities. You name it.

hastac-outline

By this point, 99% of the room is probably horrified. Maybe it’s by the prospect of an increasingly isolated academy. More likely the horror’s at my racist, sexist, whiggish, Eurocentric account of the history of science, or at my absurdly reductivist and genealogical account of the growth of knowledge.

This was intentional, and I hope you’ll forgive me, because I did it to prove a point: the power of visual rhetoric in shaping our thoughts. We use the word “imagine” to describe every act of internal creation, whether or not it conforms to the root word of “image”. In classical and medieval philosophy, thought itself was a visual process, and complex concepts were often illustrated visually in order to help students understand and remember. Ars memoriae, it was called.

And in ars memoriae, concepts were not only given visual form, they were given order. This order wasn’t merely a clever memorization technique, it was a reflection on underlying truths about the relationship between concepts. In a sense, visual representations helped bridge human thought with divine structure.

This is our entrance into ontology. We’ve essentially been talking about interdisciplinarity for two thousand years, and always alongside a visual rhetoric about the shape, or ontology, of knowledge. Over the next 10 minutes, I’ll trace the interwoven histories of ontology, illustrations, and rhetoric of interdisciplinarity. This will help contextualize our current moment, and the intention behind meeting at a conference like this one. It should, I hope, also inform how we design our community going forward.

Let’s take a look some alternatives to the Matt Might PhD model.

Diagrams of Knowledge
Diagrams of Knowledge

Countless cultural and religious traditions associate knowledge with trees; indeed, in the Bible, the fruit of one tree is knowledge itself.

During the Roman Empire and the Middle Ages, the sturdy metaphor of trees provided a sense of lineage and order to the world that matched perfectly with the neatly structured cosmos of the time. Common figures of speech we use today like “the root of the problem” or “branches of knowledge” betray the strength with which we connected these structures to one another. Visual representations of knowledge, obviously, were also tree-like.

See, it’s impossible to differentiate the visual from the essential here. The visualization wasn’t a metaphor, it was an instantiation of essence. There are three important concepts that link knowledge to trees, which at that time were inseparable.

One: putting knowledge on a tree implied a certain genealogy of ideas. What we discovered and explored first eventually branched into more precise subdisciplines, and the history of those branches are represented on the tree. This is much like any family tree you or I would put together with our parents and grandparents and so forth. The tree literally shows the historical evolution of concepts.

Two: putting knowledge on a tree implied a specific hierarchy that would by the Enlightenment become entwined with how we understood the universe. Philosophy separates into the theoretical and the practical; basic math into geometry and arithmetic. This branching hierarchy gave an importance to the root of the tree, be that root physics or God or philosophy or man, and that importance decreased as you reached the further limbs. It also implied an order of necessity: the branches of math could not exist without the branch of philosophy it stemmed from. This is why today people still think things like physics is the most important discipline.

Three: As these trees were represented, there was no difference between the concept of a branch of knowledge, the branch of knowledge itself, and the object of study of that branch of knowledge. The relationship of physics to chemistry isn’t just genealogical or foundational; it’s actually transcendent. The conceptual separation of genealogy, ontology, and transcendence would not come until much later.

It took some time for the use of the branching tree as a metaphor for knowledge to take hold, competing against other visual and metaphorical representations, but once it did, it ruled victorious for centuries. The trees spread and grew until they collapsed under their own weight by the late nineteenth century, leaving a vacuum to be filled by faceted classification systems and sprawling network visualizations. The loss of a single root as the source of knowledge signaled an epistemic shift in how knowledge is understood, the implications of which are still unfolding in present-day discussions of interdisciplinarity.

By visualizing knowledge itself as a tree, our ancestors reinforced both an epistemology and a phenomenology of knowledge, ensuring that we would think of concepts as part of hierarchies and genealogies for hundreds of years. As we slowly moved away from strictly tree-based representations of knowledge in the last century, we have also moved away from the sense that knowledge forms a strict hierarchy. Instead, we now believe it to be a diffuse system of occasionally interconnected parts.

Of course, the divisions of concepts and bodies of study have no natural kind. There are many axes against which we may compare biology to literature, but even the notion of an axis of comparison implies a commonality against which the two are related which may not actually exist. Still, we’ve found the division of knowledge into subjects, disciplines, and fields a useful practice since before Aristotle. The metaphors we use for these divisions influence our understanding of knowledge itself: structured or diffuse; overlapping or separate; rooted or free; fractals or divisions; these metaphors inform how we think about thinking, and they lend themselves to visual representations which construct and reinforce our notions of the order of knowledge.

Arbor Scientiae, late thirteenth century, Ramon Llull. [via]
Arbor Scientiae, late thirteenth century, Ramon Llull.
Given all this, it should come as no surprise that medieval knowledge was shaped like a tree – God sat at the root, and the great branching of knowledge provided a transcendental order of things. Physics, ethics, and biology branched further and further until tiny subdisciplines sat at every leaf. One important aspect of these illustrations was unity – they were whole and complete, and even more, they were all connected. This mirrors pretty closely that circle from Matt Might.

Christophe de Savigny’s Tableaux: Accomplis de tous les arts liberaux, 1587
Christophe de Savigny’s Tableaux: Accomplis de tous les arts liberaux, 1587

Speaking of that circle I had up earlier, many of these branching diagrams had a similar feature. Notice the circle encompassing this illustration, especially the one on the left here: it’s a chain. The chain locks the illustration down: it says, there are no more branches to grow.

This and similar illustrations were also notable for their placement. This was an index to a book, an early encyclopedia of sorts – you use the branches to help you navigate through descriptions of the branches of knowledge. How else should you organize a book of knowledge than by its natural structure?

Bacon's Advancement of Learning
Bacon’s Advancement of Learning

We start seeing some visual, rhetorical, and ontological changes by the time of Francis Bacon, who wrote “the distributions and partitions of knowledge are […] like branches of a tree that meet in a stem, which hath a dimension and quantity of entireness and continuance, before it come to discontinue and break itself into arms and boughs.”

The highly influential book broke the trends in three ways:

  1. it broke the “one root” model of knowledge.
  2. It shifted the system from closed to open, capable of growth and change
  3. it detached natural knowledge from divine wisdom.

Bacon’s uprooting of knowledge, dividing it into history, poesy, and philosophy, each with its own root, was an intentional rhetorical strategy. He used it to argue that natural philosophy should be explored at the expense of poesy and history. Philosophy, what we now call science, was now a different kind of knowledge, worthier than the other two.

And doesn’t that feel a lot like today?

Bacon’s system also existed without an encompassing chain, embodying the idea that learning could be advanced; that the whole of knowledge could not be represented as an already-grown tree. There was no complete order of knowledge, because knowledge changes.

And, by being an imperfect, incomplete entity, without union, knowledge was notably separated from divine wisdom.

Kircher's Philosophical tree representing all branches of knowledge, from Ars Magna Sciendi (1669), p. 251.
Kircher’s Philosophical tree representing all branches of knowledge, from Ars Magna Sciendi (1669), p. 251.

Of course, divinity and transcendence wasn’t wholly exorcised from these ontological illustrations: Athanasius Kircher put God on the highest branch, feeding the tree’s growth. (Remember, from my earlier circle metaphor, the importance of the poking holes in the fabric of the cosmos to let the light of heaven shine through?). Descartes as well continued to describe knowledge as a tree, whose roots were reliant on divine existence.

Chambers' Cyclopædia
Chambers’ Cyclopædia

But even without the single trunk, without God, without unity, the metaphors were still ontologically essential, even into the 18th century. This early encyclopedia by Ephraim Chambers uses the tree as an index, and Chambers writes:

“the Origin and Derivation of the several Parts, and the relation in which [the disciplines] stand to their common Stock and to each other; will assist in restoring ‘em to their proper Places

Their proper places. This order is still truth with a capital T.

The encyclopedia of Diderot & D'alembert
The encyclopedia of Diderot & D’alembert

It wasn’t until the mid-18th century, with Diderot and d’Alembert’s encyclopedia, that serious thinkers started actively disputing the idea that these trees were somehow indicative of the essence of knowledge. Even they couldn’t escape using trees, however, introducing their enyclopedia by saying “We have chosen a division which has appeared to us most nearly satisfactory for the encyclopedia arrangement of our knowledge and, at the same time, for its genealogical arrangement.

Even if the tree wasn’t the essence of knowledge, it still represented possible truth about the genealogy of ideas. It took until a half century later, with the Encyclopedia Britannica, for the editors to do away with tree illustrations entirely and write that the world was “perpetually blended in almost every branch of human knowledge”. (Notice they still use the word branch.) By now, a philosophical trend that began with Bacon was taking form through the impossibility of organizing giant libraries and encyclopedia: that there was no unity of knowledge, no implicit order, and no viable hierarchy.

Banyan tree [via]
It took another century to find a visual metaphor to replace the branching tree. Herbert Spencer wrote that the branches of knowledge “now and again re-unite […], they severally send off and receive connecting growths; and the intercommunion is ever becoming more frequent, more intricate, more widely ramified.” Classification theorist S.R. Ranganathan compared knowledge to the Banyan tree from his home country of India, which has roots which both grow from the bottom up and the top down.

Otlet 1937
Otlet 1937

The 20th century saw a wealth of new shapes of knowledge. Paul Otlet conceived a sort of universal network, connected through individual’s thought processes. H.G. Wells shaped knowledge very similar to Matt Might’s illustrated PhD from earlier: starting with a child’s experience of learning and branching out. These were both interesting developments, as they rhetorically placed the ontology of knowledge in the realm of the psychological or the social: driven by people rather than some underlying objective reality about conceptual relationships.

Porter’s 1939 Map of Physics [via]
Around this time there was a flourishing of visual metaphors, to fill the vacuum left by the loss of the sturdy tree.There was, uncoincidentally, a flourishing of uses for these illustrations. Some, like this map, was educational and historical, teaching students how the history of physics split and recombined like water flowing through rivers and tributaries. Others, like the illustration to the right, showed how the conceptual relationships between knowledge domains differed from and overlapped with library classification schemes and literature finding aids.

Small & Garfield, 1985
Small & Garfield, 1985

By the 80s, we start seeing a slew of the illustrations we’re all familiar with: those sexy sexy network spaghetti-and-meatball graphs. We often use them to illustrate citation chains, and the relationship between academic disciplines. These graphs, so popular in the 21st century, go hand-in-hand with the ontological baggage we’re used to: that knowledge is complex, unrooted, interconnected, and co-constructed. This fits well with the current return to a concept we’d mostly left in the 19th century: that knowledge is a single, growing unit, that it’s consilient, that everyone is connected. It’s a return to the Republic of Letters from the C.P. Snow’s split of the Two Cultures.

It also notably departs from genealogical, transcendental, and even conceptual discussions of knowledge. These networks, broadly construed, are social representations, and while those relationships may often align with conceptual ones, concepts are not what drive the connections.

Fürbringer's Illustration of Bird Evolution, 1888
Fürbringer’s Illustration of Bird Evolution, 1888

Interestingly, there is precedent in these sorts of illustrations in the history of evolutionary biology. In the late 19th-century, illustrators and scientists began asking what it would look like if you took a slice from the evolutionary tree – or, what does the tree of life look like when you’re looking at it from the top-down?

What you get is a visual structure very similar to the network diagrams we’re now used to. And often, if you probe those making the modern visualizations, they will weave a story about the history of these networks that is reminiscent of branching evolutionary trees.

There’s another set of epistemological baggage that comes along with these spaghetti-and-meatball-graphs. Ben Fry, a well-known researcher in information visualization, wrote:

“There is a tendency when using [networks] to become smitten with one’s own data. Even though a graph of a few hundred nodes quickly becomes unreadable, it is often satisfying for the creator because the resulting figure is elegant and complex and may be subjectively beautiful, and the notion that the creator’s data is ‘complex’ fits just fine with the creator’s own interpretation of it. Graphs have a tendency of making a data set look sophisticated and important, without having solved the problem of enlightening the viewer.”

Actually, were any of you here at last night’s Pink Floyd light show in the planetarium? They’re a lot like that. [Yes, readers, HASTAC put on a Pink Floyd light show.]

And this is where we are now.

hastac-outline

Which brings us back to the outline, and HASTAC. Cathy Davidson has often described HASTAC as a social network, which is (at least on the web) always an intentionally-designed medium. Its design grants certain affordances to users: is it easier to communicate individually or in groups? What types of communities, events, or content is prioritized? These are design decisions that affect how the HASTAC community functions and interacts.

And the design decisions going into HASTAC are informed by its intent, so what is that intent? In their groundbreaking 2004 manifesto in the Chronicle, Cathy Davidson and David Goldberg wrote:

“We believe that a new configuration in the humanities must be championed to ensure their centrality to all intellectual enterprises in the university and, more generally, to understanding the human condition and thereby improving it; and that those intellectual changes must be supported by new institutional structures and values.”

This was a HASTAC rallying cry: how can the humanities constructively inform the world? Notice especially how they called for “New Institutional Structures.”

Remember earlier, how I talked about the problem if isolation? While my story about it was problematic, it doesn’t make disciplinary superspecialization any less real a problem. For all its talk of interdisciplinarity, academia is averse to synthesis on many fronts, superspecialization being just one of them. A dissertation based on synthesis, for example, is much less likely to get through a committee than a thorough single intellectual contribution to one specific field.

The academy is also weirdly averse to writing for public audiences. Popular books won’t get you tenure. But every discipline is a popular audience to most other disciplines: you wouldn’t talk to a chemist about history the same way you’d talk to a historian. Synthetic and semi-public work is exactly the sort of work that will help with HASTAC’s goal of a truly integrated and informed academy for social good, but the cards are stacked against it. Cathy and David hit the nail on the head when they target institutional structures as a critical point for improvement.

This is where design comes in.

Richmond, 1954
Richmond, 1954

Recall again the theme this year: The Art and Science of Digital Humanities. I propose we take the next few days to think about how we can use art and science to make HASTAC even better at living up its intent. That is, knowing what we do about collaboration, about visual rhetoric, about the academy, how can we design an intentional community to meet its goals? Perusing the program, it looks like most of us will already be discussing exactly this, but it’s useful to put a frame around it.

When we talk about structure and the social web, there’s many great examples we may learn from. One such example is that of Tara McPherson and her colleagues, in designing the web publishing platform Scalar. As opposed to WordPress, its cousin in functionality, Scalar was designed with feminist and humanist principles in mind, allowing for more expressive, non-hierarchical “pathways” through content.

When talking of institutional, social, and web-based structures, we can also take lessons history. In Early Modern Europe, the great network of information exchange known as the Republic of Letters was a shining example of the influence of media structures on innovation. Scholars would often communicate through “hubs”, which were personified in people nicknamed things like “the mailbox of Europe”. And they helped distribute new research incredibly efficiently through their vast web of social ties. These hubs were essential to what’s been called the scientific revolution, and without their structural role, it’s unlikely you’d see references to a scientific revolution in the 17th century Europe.

Similarly, at that time, the Atlantic slave trade was wreaking untold havoc on the world. For all the ills it caused, we at least can take some lessons from it in the intentional design of a scholarly network. There existed a rich exchange of medical knowledge between Africans and indigenous Americans that bypassed Europe entirely, taking an entirely different sort of route through early modern social networks.

If we take the present day, we see certain affordances of social networks similarly used to subvert or reconfigure power structures, as with the many revolutions in North Africa and the Middle East, or the current activist events taking place around police brutality and racism in the US. Similar tactics that piggy-back on network properties are used by governments to spread propaganda, ad agencies to spread viral videos, and so forth.

The question, then, is how we can intentionally design a community, using principles we learn from historical action, as well as modern network science, in order to subvert institutional structures in the manner raised by Cathy and David?

Certainly we also ought to take into account the research going into collaboration, teamwork, and group science. We’ve learned, for example, that teams with diverse backgrounds often come up with more creative solutions to tricky problems. We’ve learned that many small, agile groups often outperform large groups with the same amount of people, and that informal discussion outside the work-space contributes in interesting ways to productivity. Many great lessons can be found in Michael Nielsen’s book, Reinventing Discovery.

We can use these historical and lab-based examples to inform the design of social networks. HASTAC already work towards this goal through its scholars program, but there are more steps that may be taken, such as strategically seeking out scholars from underrepresented parts of the network.

So this covers covers the science, but what about the art?

Well, I spent the entire middle half of this talk discussing how visual rhetoric is linked to ontological metaphors of knowledge. The tree metaphor of knowledge, for example, was so strongly held that it fooled Descartes into breaking his claims of mind-body dualism.

So here is where the artists in the room can also fruitfully contribute to the same goal: by literally designing a better infrastructure. Visually. Illustrations can be remarkably powerful drivers of reconceptualization, and we have the opportunity here to affect changes in the academy more broadly.

One of the great gifts of the social web, at least when it’s designed well, is its ability to let nodes on the farthest limbs of the network to still wield remarkable influence over the whole structure. This is why viral videos, kickstarter projects, and cats playing pianos can become popular without “industry backing”. And the decisions we make in creating illustrations, in fostering online interactions, in designing social interfaces, can profoundly affect the way those interactions reinforce, subvert, or sidestep power structures.

So this is my call to the room: let’s revisit the discussion about designing the community we want to live in.

 

Thanks very much.

Do historians need scientists?

[edit: I’m realizing I didn’t make it clear in this post that I’m aware many historians consider themselves scientists, and that there’s plenty of scientific historical archaeology and anthropology. That’s exactly what I’m advocating there be more of, and more varied.]

Short Answer: Yes.

Less Snarky Answer: Historians need to be flexible to fresh methods, fresh perspectives, and fresh blood. Maybe not that last one, I guess, as it might invite vampires.Okay, I suppose this answer wasn’t actually less snarky.

Long Answer

The long answer is that historians don’t necessarily need scientists, but that we do need fresh scientific methods. Perhaps as an accident of our association with the ill-defined “humanities”, or as a result of our being placed in an entirely different culture (see: C.P. Snow), most historians seem fairly content with methods rooted in thinking about text and other archival evidence. This isn’t true of all historians, of course – there are economic historians who use statistics, historians of science who recreate old scientific experiments, classical historians who augment their research with archaeological findings, archival historians who use advanced ink analysis,  and so forth. But it wouldn’t be stretching the truth to say that, for the most part, historiography is the practice of thinking cleverly about words to make more words.

I’ll argue here that our reliance on traditional methods (or maybe more accurately, our odd habit of rarely discussing method) is crippling historiography, and is making it increasingly likely that the most interesting and innovative historical work will come from non-historians. Sometimes these studies are ill-informed, especially when the authors decide not to collaborate with historians who know the subject, but to claim that a few ignorant claims about history negate the impact of these new insights is an exercise in pedantry.

In defending the humanities, we like to say that scientists and technologists with liberal arts backgrounds are more well-rounded, better citizens of the world, more able to contextualize their work. Non-humanists benefit from a liberal arts education in pretty much all the ways that are impossible to quantify (and thus, extremely difficult to defend against budget cuts). We argue this in the interest of rounding a person’s knowledge, to make them aware of their past, of their place in a society with staggering power imbalances and systemic biases.

Humanities departments should take a page from their own books. Sure, a few general ed requirements force some basic science and math… but I got an undergraduate history degree in a nice university, and I’m well aware how little STEM I actually needed to get through it. Our departments are just as guilty of narrowness as those of our STEM colleagues, and often because of it, we rely on applied mathematicians, statistical physicists, chemists, or computer scientists to do our innovative work for (or sometimes, thankfully, with) us.

Of course, there’s still lots of innovative work to be done from a textual perspective. I’m not downplaying that. Not everyone needs to use crazy physics/chemistry/computer science/etc. methods. But there’s a lot of low hanging fruit at the intersection of historiography and the natural sciences, and we’re not doing a great job of plucking it.

The story below is illustrative.

Gutenberg

Last night, Blaise Agüera y Arcas presented his research on Gutenberg to a packed house at our rare books library. He’s responsible for a lot of the cool things that have come out of Microsoft in the last few years, and just got a job at Google, where presumably he will continue to make cool things. Blaise has degrees in physics and applied mathematics. And, a decade ago, Blaise and historian/librarian Paul Needham sent ripples through the History of the Book community by showing that Gutenberg’s press did not work at all the way people expected.

It was generally assumed that Gutenberg employed a method called punchcutting in order to create a standard font. A letter carved into a metal rod (a “punch”) would be driven into a softer metal (a “matrix”) in order to create a mold. The mold would be filled with liquid metal which hardened to form a small block of a single letter (a “type”), which would then be loaded onto the press next to other letters, inked, and then impressed onto a page. Because the mold was metal, many duplicate “types” could be made of the same letter, thus allowing many uses of the same letter to appear identical on a single pressed page.

Punch matrix system. [via]
Punch matrix system. [via]
Type to be pressed. [via]
Type to be pressed. [via]
This process is what allowed all the duplicate letters to appear identical in Gutenberg’s published books. Except, of course, careful historians of early print noticed that letters weren’t, in fact, identical. In the 1980s, Paul Needham and a colleague attempted to produce an inventory of all the different versions of letters Gutenberg used, but they stopped after frequently finding 10 or more obviously distinct versions of the same letter.

Needham's inventory of Gutenberg type. [via]
Needham’s inventory of Gutenberg type. [via]
This was perplexing, but the subject was bracketed away for a while, until Blaise Agüera y Arcas came to Princeton and decided to work with Needham on the problem. Using extremely high-resolution imagining techniques, Blaise noted that there were in fact hundreds of versions of every letter. Not only that, there were actually variations and regularities in the smaller elements that made up letters. For example, an “n” was formed by two adjacent vertical lines, but occasionally the two vertical lines seem to have flipped places entirely. The extremely basic letter “i” itself had many variations, but within those variations, many odd self-similarities.

Variations in the letter "i" in Gutenberg's type. [via]
Variations in the letter “i” in Gutenberg’s type. [via]
Historians had, until this analysis, assumed most letter variations were due to wear of the type blocks. This analysis blew that hypothesis out of the water. These “i”s were clearly not all made in the same mold; but then, how had they been made? To answer this, they looked even closer at the individual letters.

 

Close up of Gutenberg letters, with light shining through page. [via]
Close up of Gutenberg letters, with light shining through page. [via]
It’s difficult to see at first glance, but they found something a bit surprising. The letters appeared to be formed of overlapping smaller parts: a vertical line, a diagonal box, and so forth. The below figure shows a good example of this. The glyphs on the bottom have have a stem dipping below the bottom horizontal line, while the glyphs at the top do not.

Abbreviation of 'per'. [via]
Abbreviation of ‘per’. [via]
The conclusion Needham and Agüera y Arcas drew, eventually, was that the punchcutting method must not have been used for Gutenberg’s early material. Instead, a set of carved “strokes” were pushed into hard sand or soft clay, configured such that the strokes would align to form various letters, not unlike the formation of cuneiform. This mold would then be used to cast letters, creating the blocks we recognize from movable type. The catch is that this soft clay could only cast letters a few times before it became unusable and would need to be recreated. As Gutenberg needed multiple instances of individual letters per page, many of those letters would be cast from slightly different soft molds.

Low-Hanging Fruit

At the end of his talk, Blaise made an offhand comment: how is it that historians/bibliographers/librarians have been looking at these Gutenbergs for so long, discussing the triumph of their identical characters, and not noticed that the characters are anything but uniform? Or, of those who had noticed it, why hadn’t they raised any red flags?

The insights they produced weren’t staggering feats of technology. He used a nice camera, a light shining through the pages of an old manuscript, and a few simple image recognition and clustering algorithms. The clustering part could even have been done by hand, and actually had been, by Paul Needham. And yes, it’s true, everything is obvious in hindsight, but there were a lot of eyes on these bibles, and odds are if some of them had been historians who were trained in these techniques, this insight could have come sooner. Every year students do final projects and theses and dissertations, but what percent of those use techniques from outside historiography?

In short, there’s a lot of very basic assumptions we make about the past that could probably be updated significantly if we had the right skillset, or knew how to collaborate with those who did. I think people like William Newman, who performs Newton’s alchemical experiments, is on the right track. As is Shawn Graham, who reanimates the trade networks of ancient Rome using agent-based simulations, or Devon Elliott, who creates computational and physical models of objects from the history of stage magic. Elliott’s models have shown that certain magic tricks couldn’t possibly have worked as they were described to.

The challenge is how to encourage this willingness to reach outside traditional historiographic methods to learn about the past. Changing curricula to be more flexible is one way, but that is a slow and institutionally difficult process. Perhaps faculty could assign group projects to students taking their gen-ed history courses, encouraging disciplinary mixes and non-traditional methods. It’s an open question, and not an easy one, but it’s one we need to tackle.

Bridging Token and Type

There’s an oft-spoken and somewhat strawman tale of how the digital humanities is bridging C.P. Snow’s “Two Culture” divide, between the sciences and the humanities. This story is sometimes true (it’s fun putting together Ocean’s Eleven-esque teams comprising every discipline needed to get the job done) and sometimes false (plenty of people on either side still view the other with skepticism), but as a historian of science, I don’t find the divide all that interesting. As Snow’s title suggests, this divide is first and foremost cultural. There’s another overlapping divide, a bit more epistemological, methodological, and ontological, which I’ll explore here. It’s the nomothetic(type)/idiographic(token) divide, and I’ll argue here that not only are its barriers falling, but also that the distinction itself is becoming less relevant.

Nomothetic (Greek for “establishing general laws”-ish) and Idiographic (Greek for “pertaining to the individual thing”-ish) approaches to knowledge have often split the sciences and the humanities. I’ll offload the hard work onto Wikipedia:

Nomothetic is based on what Kant described as a tendency to generalize, and is typical for the natural sciences. It describes the effort to derive laws that explain objective phenomena in general.

Idiographic is based on what Kant described as a tendency to specify, and is typical for the humanities. It describes the effort to understand the meaning of contingent, unique, and often subjective phenomena.

These words are long and annoying to keep retyping, and so in the longstanding humanistic tradition of using new words for words which already exist, henceforth I shall refer to nomothetic as type and idiographic as token. 1 I use these because a lot of my digital humanities readers will be familiar with their use in text mining. If you counted the number of unique words in a text, you’d be be counting the number of types. If you counted the number of total words in a text, you’d be counting the number of tokens, because each token (word) is an individual instance of a type. You can think of a type as the platonic ideal of the word (notice the word typical?), floating out there in the ether, and every time it’s actually used, it’s one specific token of that general type.

The Token/Type Distinction
The Token/Type Distinction

Usually the natural and social sciences look for general principles or causal laws, of which the phenomena they observe are specific instances. A social scientist might note that every time a student buys a $500 textbook, they actively seek a publisher to punch, but when they purchase $20 textbooks, no such punching occurs. This leads to the discovery of a new law linking student violence with textbook prices. It’s worth noting that these laws can and often are nuanced and carefully crafted, with an awareness that they are neither wholly deterministic nor ironclad.

[via]
[via]
The humanities (or at least history, which I’m more familiar with) are more interested in what happened than in what tends to happen. Without a doubt there are general theories involved, just as in the social sciences there are specific instances, but the intent is most-often to flesh out details and create a particular internally consistent narrative. They look for tokens where the social scientists look for types. Another way to look at it is that the humanist wants to know what makes a thing unique, and the social scientist wants to know what makes a thing comparable.

It’s been noted these are fundamentally different goals. Indeed, how can you in the same research articulate the subjective contingency of an event while simultaneously using it to formulate some general law, applicable in all such cases? Rather than answer that question, it’s worth taking time to survey some recent research.

A recent digital humanities panel at MLA elicited responses by Ted Underwood and Haun Saussy, of which this post is in part itself a response. One of the papers at the panel, by Long and So, explored the extent to which haiku-esque poetry preceded what is commonly considered the beginning of haiku in America by about 20 years. They do this by teaching the computer the form of the haiku, and having it algorithmically explore earlier poetry looking for similarities. Saussy comments on this work:

[…] macroanalysis leads us to reconceive one of our founding distinctions, that between the individual work and the generality to which it belongs, the nation, context, period or movement. We differentiate ourselves from our social-science colleagues in that we are primarily interested in individual cases, not general trends. But given enough data, the individual appears as a correlation among multiple generalities.

One of the significant difficulties faced by digital humanists, and a driving force behind critics like Johanna Drucker, is the fundamental opposition between the traditional humanistic value of stressing subjectivity, uniqueness, and contingency, and the formal computational necessity of filling a database with hard decisions. A database, after all, requires you to make a series of binary choices in well-defined categories: is it or isn’t it an example of haiku? Is the author a man or a woman? Is there an author or isn’t there an author?

Underwood addresses this difficulty in his response:

Though we aspire to subtlety, in practice it’s hard to move from individual instances to groups without constructing something like the sovereign in the frontispiece for Hobbes’ Leviathan – a homogenous collection of instances composing a giant body with clear edges.

But he goes on to suggest that the initial constraint of the digital media may not be as difficult to overcome as it appears. Computers may even offer us a way to move beyond the categories we humanists use, like genre or period.

Aren’t computers all about “binary logic”? If I tell my computer that this poem both is and is not a haiku, won’t it probably start to sputter and emit smoke?

Well, maybe not. And actually I think this is a point that should be obvious but just happens to fall in a cultural blind spot right now. The whole point of quantification is to get beyond binary categories — to grapple with questions of degree that aren’t well-represented as yes-or-no questions. Classification algorithms, for instance, are actually very good at shades of gray; they can express predictions as degrees of probability and assign the same text different degrees of membership in as many overlapping categories as you like.

Here we begin to see how the questions asked of digital humanists (on the one side; computational social scientists are tackling these same problems) are forcing us to reconsider the divide between the general and the specific, as well as the meanings of categories and typologies we have traditionally taken for granted. However, this does not yet cut across the token/type divide: this has gotten us to the macro scale, but it does not address general principles or laws that might govern specific instances. Historical laws are a murky subject, prone to inducing fits of anti-deterministic rage. Complex Systems Science and the lessons we learn from Agent-Based Modeling, I think, offer us a way past that dilemma, but more on that later.

For now, let’s talk about influence. Or diffusion. Or intertextuality. 2 Matthew Jockers has been exploring these concepts, most recently in his book Macroanalysis. The undercurrent of his research (I think I’ve heard him call it his “dangerous idea”) is a thread of almost-determinism. It is the simple idea that an author’s environment influences her writing in profound and easy to measure ways. On its surface it seems fairly innocuous, but it’s tied into a decades-long argument about the role of choice, subjectivity, creativity, contingency, and determinism. One word that people have used to get around the debate is affordances, and it’s as good a word as any to invoke here. What Jockers has found is a set of environmental conditions which afford certain writing styles and subject matters to an author. It’s not that authors are predetermined to write certain things at certain times, but that a series of factors combine to make the conditions ripe for certain writing styles, genres, etc., and not for others. The history of science analog would be the idea that, had Einstein never existed, relativity and quantum physics would still have come about; perhaps not as quickly, and perhaps not from the same person or in the same form, but they were ideas whose time had come. The environment was primed for their eventual existence. 3

An example of shape affording certain actions by constraining possibilities and influencing people. [via]
An example of shape affording certain actions by constraining possibilities and influencing people. [via]
It is here we see the digital humanities battling with the token/type distinction, and finding that distinction less relevant to its self-identification. It is no longer a question of whether one can impose or generalize laws on specific instances, because the axes of interest have changed. More and more, especially under the influence of new macroanalytic methodologies, we find that the specific and the general contextualize and augment each other.

The computational social sciences are converging on a similar shift. Jon Kleinberg likes to compare some old work by Stanley Milgram 4, where he had people draw maps of cities from memory, with digital city reconstruction projects which attempt to bridge the subjective and objective experiences of cities. The result in both cases is an attempt at something new: not quite objective, not quite subjective, and not quite intersubjective. It is a representation of collective individual experiences which in its whole has meaning, but also can be used to contextualize the specific. That these types of observations can often lead to shockingly accurate predictive “laws” isn’t really the point; they’re accidental results of an attempt to understand unique and contingent experiences at a grand scale. 5

Manhattan. Dots represent where people have taken pictures; blue dots are by locals, red by tourists, and yellow unsure. [via Eric Fischer]
Manhattan. Dots represent where people have taken pictures; blue dots are by locals, red by tourists, and yellow are uncertain. [via Eric Fischer]
It is no surprise that the token/type divide is woven into the subjective/objective divide. However, as Daston and Galison have pointed out, objectivity is not an ahistorical category. 6 It has a history, is only positively defined in relation to subjectivity, and neither were particularly useful concepts before the 19th century.

I would argue, as well, that the nomothetic and idiographic divide is one which is outliving its historical usefulness. Work from both the digital humanities and the computational social sciences is converging to a point where the objective and the subjective can peaceably coexist, where contingent experiences can be placed alongside general predictive principles without any cognitive dissonance, under a framework that allows both deterministic and creative elements. It is not that purely nomothetic or purely idiographic research will no longer exist, but that they no longer represent a binary category which can usefully differentiate research agendas. We still have Snow’s primary cultural distinctions, of course, and a bevy of disciplinary differences, but it will be interesting to see where this shift in axes takes us.

Notes:

  1. I am not the first to do this. Aviezer Tucker (2012) has a great chapter in The Oxford Handbook of Philosophy of Social Science, “Sciences of Historical Tokens and Theoretical Types: History and the Social Sciences” which introduces and historicizes the vocabulary nicely.
  2. Underwood’s post raises these points, as well.
  3. This has sometimes been referred to as environmental possibilism.
  4. Milgram, Stanley. 1976. “Pyschological Maps of Paris.” In Environmental Psychology: People and Their Physical Settings, edited by Proshansky, Ittelson, and Rivlin, 104–124. New York.

    ———. 1982. “Cities as Social Representations.” In Social Representations, edited by R. Farr and S. Moscovici, 289–309.

  5. If you’re interested in more thoughts on this subject specifically, I wrote a bit about it in relation to single-authorship in the humanities here
  6. Daston, Lorraine, and Peter Galison. 2007. Objectivity. New York, NY: Zone Books.

Bridging the gap

Traditional disciplinary silos have always been useful fictions. They help us organize our research centers, our journals, our academies, and our lives. However much simplicity we gain from quickly and easily being able to place research X into box Y, however, is offset by the requirement of fitting research X into one and only one box Y. What we gain in simplicity, we lose in flexibility.

The academy is facing convergence on two fronts.

A turn toward computation, complicated methodologies, and more nuanced approaches to research is erecting increasingly complex barriers to entry on basic scholarship. Where once disparate disciplines had nothing in common besides membership in the academy, now they are connected by a joint need for computer infrastructure, algorithm expertise, and methodological training. I recently commiserated with a high energy physicist and a geneticist on the difficulties of parallelizing certain data analysis algorithms. Somehow, in the space of minutes, we three very unrelated researchers reached common ground.

An increasing reliance on consilience provides the other converging factor. A steady but relentless rise in interest in interdisciplinarity has manifested itself in scholarly writings through increasingly wide citation patterns. That is, scholars are drawing from sources further from their own, and with growing frequency. 1 Much of this may be attributed to the rise of computer-aided document searches. Whatever the reasons, scholars are drawing from a much wider variety of research, and this in turn often brings more variety to their research.

Google Ngrams shows us how much people like to say "interdisciplinarity."
Measuring the interdisciplinarity of papers over time. From Guo, Hanning, Scott B. Weingart, and Katy Börner. 2011. “Mixed-indicators model for identifying emerging research areas.” Scientometrics 89 (June 21): 421-435.

Methodological and infrastructural convergence, combined with subject consilience, is dislodging scholarship from its traditional disciplinary silos. Perhaps, in an age when one-item-one-box taxonomies are rapidly being replaced by more flexible categorization schemes and machine-assisted self-organizations, these disciplinary distinctions are no longer as useful as they once were.

Unfortunately, the boom of interdisciplinary centers and institutes in the 70’s and 80’s left many graduates untenurable. By focusing on problems out the scope of any one traditional discipline, graduates from these programs often found themselves outside the scope of any particular group that might hire them. A university system that has existed in some recognizable form for the last thousand years cannot help but pick up inertia, and that indeed is what has happened here. While a flexible approach to disciplinarity might be better if starting all over again, the truth is we have to work with what we have, and a total overhaul is unlikely.

The question is this: what are the smallest and easiest possible changes we can make, at the local level, to improve the environment for increasingly convergent research in the long term? Is there a minimal amount of work one can do such that the returns are sufficiently large to support flexibility? One inspiring step is Bethany Nowviskie‘s (and many others’) #alt-ac project and the movement surrounding it, which pushes for alternative or unconventional academic careers.

Alternative Academic Careers

The #alt-ac movement seems to be picking up the most momentum with those straddling the tech/humanities divide, however it is equally important for those crossing all traditional academic divides. This includes divides between traditionally diverse disciplines (e.g., literature and social science), between methods (e.g., unobtrusive measures and surveys), between methodologies (e.g., quantitative and qualitative), or in general between C.P. Snow’s “Two Cultures” of science and the humanities.

These divides are often useful and, given that they are reinforced by tradition, it’s usually not worth the effort to attempt to move beyond them. The majority of scholarly work still fits reasonably well within some pre-existing community. For those working across these largely constructed divides, however, an infrastructure needs to exist to support their research. National and private funding agencies have answered this call admirably, however significant challenges still exist at the career level.

C.P. Snow bridging the "Two Cultures." Image from Scientific American.

Novel and surprising research often comes from connecting previously unrelated silos. For any combination of communities, if there exists interesting research which could be performed at their intersection, it stands to reason that those which have been most difficult to connect would be the most fruitful if combined. These combinations would likely be the ones with the most low-hanging fruit.

The walls between traditional scholarly communities are fading. In order for the academy to remain agile and flexible, it must facilitate and adapt to the changing scholarly landscape. “The academy,” however, is not some unified entity which can suddenly change directions at the whim of a few; it is all of us. What can we do to affect the desired change? On the scholarly communication front, scholars are adapting  by signing pledges to limit publications and reviews to open access venues. We can talk about increasing interdisciplinarity, but what does interdisciplinarity mean when disciplines themselves are so amorphous?

Have any great ideas on what we can do to improve things? Want to tell me how starry-eyed and ignorant I am, and how unnecessary these changes would be? All comments welcome!

[Note: Surprise! I have a conflict of interest. I’m “interdisciplinary” and eventually want to find a job. Help?]

Notes:

  1. Increasingly interdisciplinary citation patterns is a trend I noticed when working on a paper I recently co-authored in Scientometrics. Over the last 30 years, publications in the Proceedings of the National Academy of Sciences have shown a small but statistically significant trend in the interdisciplinarity of citations. Whereas a paper 30 years ago may have cited sources from one or a small set of closely related journals, papers now are somewhat more likely to cite a larger number of journals in increasingly disparate fields of study. This does take into account the average number of references per paper. A similar but more pronounced trend was shown in the journal Scientometrics. While this is by no means a perfect indicator for the rise of interdisciplinarity, a combination of this study and anecdotal evidence leads me to believe it is the case.