[f-s d] Cetus

Quoting Liz Losh, Jacqueline Wernimont tweeted that behind every visualization is a spreadsheet.

But what, I wondered, is behind every spreadsheet?

Space whales.

Okay, maybe space whales aren’t behind every spreadsheet, but they’re behind this one, dated 1662, notable for the gigantic nail it hammered into the coffin of our belief that heaven above is perfect and unchanging. The following post is the first in my new series full-stack dev (f-s d), where I explore the secret life of data. 1

Hevelius. Mercurius in Sole visus (1662).
Hevelius. Mercurius in Sole visus (1662).

The Princess Bride teaches us a good story involves “fencing, fighting, torture, revenge, giants, monsters, chases, escapes, true love, miracles”. In this story, Cetus, three of those play a prominent role: (red) giants, (sea) monsters, and (cosmic) miracles. Also Greek myths, interstellar explosions, beer-brewing astronomers, meticulous archivists, and top-secret digitization facilities. All together, they reveal how technologies, people, and stars aligned to stick this 350-year-old spreadsheet in your browser today.

The Sea

When Aethiopian queen Cassiopeia claimed herself more beautiful than all the sea nymphs, Poseidon was, let’s say, less than pleased. Mildly miffed. He maybe sent a sea monster named Cetus to destroy Aethiopia.

Because obviously the best way to stop a flood is to drown a princess, Queen Cassiopeia chained her daughter to the rocks as a sacrifice to Cetus. Thankfully the hero Perseus just happened to be passing through Aethiopia, returning home after beheading Medusa, that snake-haired woman whose eyes turned living creatures to stone. Perseus (depicted below as the world’s most boring 2-ball juggler) revealed Medusa’s severed head to Cetus, turning the sea monster to stone and saving the princess. And then they got married because traditional gender roles I guess?

Corinthian vase depicting Perseus, Andromeda and Ketos.
Corinthian vase depicting Perseus, Andromeda and Ketos. [via]
Cetaceans, you may recall from grade school, are those giant carnivorous sea-mammals that Captain Ahab warned you about. Cetaceans, from Cetus. You may also remember we have a thing for naming star constellations and dividing the sky up into sections (see the Zodiac), and that we have a long history of comparing the sky to the ocean (see Carl Sagan or Star Trek IV).

It should come as no surprise, then, that we’ve designated a whole section of space as ‘The Sea‘, home of Cetus (the whale), Aquarius (the God) and Eridanus (the water pouring from Aquarius’ vase, source of river floods), Pisces (two fish tied together by a rope, which makes total sense I promise), Delphinus (the dolphin), and Capricornus (the goat-fish. Listen, I didn’t make these up, okay?).

Jamieson's Celestial Atlas, Plate 21 (1822).
Jamieson’s Celestial Atlas, Plate 21 (1822). [via]
Jamieson's Celestial Atlas, Plate 23 (1822).
Jamieson’s Celestial Atlas, Plate 23 (1822). [via]
Ptolemy listed most of these constellations in his Almagest (ca. 150 A.D.), including Cetus, along with descriptions of over a thousand stars. Ptolemy’s model, with Earth at the center and the constellations just past Saturn, set the course of cosmology for over a thousand years.

Ptolemy's Cosmos [by Robert A. Hatch]
Ptolemy’s Cosmos [by Robert A. Hatch]
In this cosmos, reigning in Western Europe for centuries past Copernicus’ death in 1543, the stars were fixed and motionless. There was no vacuum of space; every planet was embedded in a shell made of aether or quintessence (quint-essence, the fifth element), and each shell sat atop the next until reaching the celestial sphere. This last sphere held the stars, each one fixed to it as with a pushpin. Of course, all of it revolved around the earth.

The domain of heavenly spheres was assumed perfect in all sorts of ways. They slid across each other without friction, and the planets and stars were perfect spheres which could not change and were unmarred by inconsistencies. One reason it was so difficult for even “great thinkers” to believe the earth orbited the sun, rather than vice-versa, was because such a system would be at complete odds with how people knew physics to work. It would break gravity, break motion, and break the outer perfection of the cosmos, which was essential (…heh) 2 to our notions of, well, everything.

Which is why, when astronomers with their telescopes and their spreadsheets started systematically observing imperfections in planets and stars, lots of people didn’t believe them—even other astronomers. Over the course of centuries, though, these imperfections became impossible to ignore, and helped launch the earth in rotation ’round the sun.

This is the story of one such imperfection.

A Star is Born (and then dies)

Around 1296 A.D., over the course of half a year, a red dwarf star some 2 quadrillion miles away grew from 300 to 400 times the size of our sun. Over the next half year, the star shrunk back down to its previous size. Light from the star took 300 years to reach earth, eventually striking the retina of German pastor David Fabricius. It was very early Tuesday morning on August 13, 1596, and Pastor Fabricius was looking for Jupiter. 3

At that time of year, Jupiter would have been near the constellation Cetus (remember our sea monster?), but Fabricius noticed a nearby bright star (labeled ‘Mira’ in the below figure) which he did not remember from Ptolemy or Tycho Brahe’s star charts.

Mira Ceti and Jupiter. [via]
Mira Ceti and Jupiter. [via]
Spotting an unrecognized star wasn’t unusual, but one so bright in so common a constellation was certainly worthy of note. He wrote down some observations of the star throughout September and October, after which it seemed to have disappeared as suddenly as it appeared. The disappearance prompted Fabricius to write a letter about it to famed astronomer Tycho Brahe, who had described a similar appearing-then-disappearing star between 1572 and 1574. Brahe jotted Fabricius’ observations down in his journal. This sort of behavior, after all, was a bit shocking for a supposedly fixed and unchanging celestial sphere.

More shocking, however, was what happened 13 years later, on February 15, 1609. Once again searching for Jupiter, pastor Fabricius spotted another new star in the same spot as the last one. Tycho Brahe having recently died, Fabricius wrote a letter to his astronomical successor, Johannes Kepler, describing the miracle. This was unprecedented. No star had ever vanished and returned, and nobody knew what to make of it.

Unfortunately for Fabricius, nobody did make anything of it. His observations were either ignored or, occasionally, dismissed as an error. To add injury to insult, a local goose thief killed Fabricius with a shovel blow, thus ending his place in this star’s story, among other stories.

Mira Ceti

Three decades passed. On the winter solstice, 1638, Johannes Phocylides Holwarda prepared to view a lunar eclipse. He reported with excitement the star’s appearance and, by August 1639, its disappearance. The new star, Holwarda claimed, should be considered of the same class as Brahe, Kepler, and Fabricius’ new stars. As much a surprise to him as Fabricius, Holwarda saw the star again on November 7, 1639. Although he was not aware of it, his new star was the same as the one Fabricius spotted 30 years prior.

Two more decades passed before the new star in the neck of Cetus would be systematically sought and observed, this time by Johannes Hevelius: local politician, astronomer, and brewer of fine beers. By that time many had seen the star, but it was difficult to know whether it was the same celestial body, or even what was going on.

Hevelius brought everything together. He found recorded observations from Holwarda, Fabricius, and others, from today’s Netherlands to Germany to Poland, and realized these disparate observations were of the same star. Befitting its puzzling and seemingly miraculous nature, Hevelius dubbed the star Mira (miraculous) Ceti. The image below, from Hevelius’ Firmamentum Sobiescianum sive Uranographia (1687), depicts Mira Ceti as the bright star in the sea monster’s neck.

Hevelius. Firmamentum Sobiescianum sive Uranographia (1687).
Hevelius. Firmamentum Sobiescianum sive Uranographia (1687).

Going further, from 1659 to 1683, Hevelius observed Mira Ceti in a more consistent fashion than any before. There were eleven recorded observations in the 65 years between Fabricius’ first sighting of the star and Hevelius’ undertaking; in the following three, he had recorded 75 more such observations. Oddly, while Hevelius was a remarkably meticulous observer, he insisted the star was inherently unpredictable, with no regularity in its reappearances or variable brightness.

Beginning shortly after Hevelius, the astronomer Ismaël Boulliau also undertook a thirty year search for Mira Ceti. He even published a prediction, that the star would go through its vanishing cycle every 332 days, which turned out to be incredibly accurate. As today’s astronomers note, Mira Ceti‘s brightness increases and decreases by several orders of magnitude every 331 days, caused by an interplay between radiation pressure and gravity in the star’s gaseous exterior.

Mira Ceti composite taken by NASA's Galaxy Evolution Explorer. [via]
Mira Ceti composite taken by NASA’s Galaxy Evolution Explorer. [via]
While of course Boulliau didn’t arrive at today’s explanation for Mira‘s variability, his solution did require a rethinking of the fixity of stars, and eventually contributed to the notion that maybe the same physical laws that apply on Earth also rule the sun and stars.

Spreadsheet Errors

But we’re not here to talk about Boulliau, or Mira Ceti. We’re here to talk about this spreadsheet:

Hevelius. Mercurius in Sole visus (1662).
Hevelius. Mercurius in Sole visus (1662).

This snippet represents Hevelius’ attempt to systematically collected prior observations of Mira Ceti. Unreasonably meticulous readers of this post may note an inconsistency: I wrote that Johannes Phocylides Holwarda observed Mira Ceti on November 7th, 1639, yet Hevelius here shows Holwarda observing the star on December 7th, 1639, an entire month later. The little notes on the side are basically the observers saying: “wtf this star keeps reappearing???”

This mistake was not a simple printer’s error. It reappeared in Hevelius’ printed books three times: 1662, 1668, and 1685. This is an early example of what Raymond Panko and others call a spreadsheet error, which appear in nearly 90% of 21st century spreadsheets. Hand-entry is difficult, and mistakes are bound to happen. In this case, a game of telephone also played a part: Hevelius may have pulled some observations not directly from the original astronomers, but from the notes of Tycho Brahe and Johannes Kepler, to which he had access.

Unfortunately, with so few observations, and many of the early ones so sloppy, mistakes compound themselves. It’s difficult to predict a variable star’s periodicity when you don’t have the right dates of observation, which may have contributed to Hevelius’ continued insistence that Mira Ceti kept no regular schedule. The other contributing factor, of course, is that Hevelius worked without a telescope and under cloudy skies, and stars are hard to measure under even the best circumstances.

To Be Continued

Here ends the first half of Cetus. The second half will cover how Hevelius’ book was preserved, the labor behind its digitization, and a bit about the technologies involved in creating the image you see.

Early modern astronomy is a particularly good pre-digital subject for full-stack dev (f-s d), since it required vast international correspondence networks and distributed labor in order to succeed. Hevelius could not have created this table, compiled from the observations of several others, without access to cutting-edge astronomical instruments and the contemporary scholarly network.

You may ask why I included that whole section on Greek myths and Ptolemy’s constellations. Would as many early modern astronomers have noticed Mira Ceti had it not sat in the center of a familiar constellation, I wonder?

I promised this series will be about the secret life of data, answering the question of what’s behind a spreadsheet. Cetus is only the first story (well, second, I guess), but the idea is to upturn the iceberg underlying seemingly mundane datasets to reveal the complicated stories of their creation and usage. Stay-tuned for future installments.

Notes:

  1. I’m retroactively adding my blog rant about data underlying an equality visualization to the f-s d series.
  2. this pun is only for historians of science
  3. Most of the historiography in this and the following section are summarized from Robert A. Hatch’s “Discovering Mira Ceti: Celestial Change and Cosmic Continuity

Down the Rabbit Hole

WHEREIN I get angry at the internet and yell at it to get off my lawn.

You know what’s cool? Ryan Cordell and friends’ Viral Texts project. It tracks how 19th-century U.S. newspapers used to copy texts from each other, little snippets of news or information, and republish them in their own publications. A single snippet of text could wind its way all across the country, sometimes changing a bit like a game of telephone, rarely-if-ever naming the original author.

Which newspapers copied from one another, from the Viral Texts project.
Which newspapers copied from one another, from the Viral Texts project.

Isn’t that a neat little slice of journalistic history? Different copyright laws, different technologies of text, different constraints of the medium, they all led to an interesting moment of textual virality in 19th-century America. If I weren’t a historian who knew better, I’d call it something like “quaint” or “charming”.

You know what isn’t quaint or charming? Living in the so-called “information age“, where everything is intertwingled, with hyperlinks and text costing pretty much zilch, and seeing the same gorram practices.

What proceeds is a rant. They say never to blog in anger. But seriously.

Inequality in Science

Tonight Alex Vespignani, notable network scientist, tweeted a link to an interesting-sounding study about inequality in scientific publishing. In Quartz! I like Quartz, it’s where Christopher Mims used to post awesome science things. Part of their mission statement reads:

In all that we do at Quartz, we embrace openness: open source code, an open newsroom, and open access to the data behind our journalism.

Pretty cool, right?

Anyway, here’s the tweet:

It links to this article on a “map of the world’s scientific research“. Because Vespignani tweeted it, I took it seriously (yes yes I know rt≠endorsement), and read the article. It describes a cartogram map of scientific research publications which shows how the U.S. and Western Europe (and a bit of China) dominates the research world, making the point that such a disparity is “disturbingly unequal”.

Map of scientific research, pulled from qz.com
Map of scientific research, by how many published articles are produced in a country, pulled from qz.com

“What’s driving the inequality?” they ask. Money & tech play a big role. So does what counts as “high impact” in science. What’s worse, the journalist writes,

In the worst cases, the global south simply provides novel empirical sites and local academics may not become equal partners in these projects about their own contexts.

The author points out an issue with the data: it only covers journals, not monographs, grey literature, edited volumes, etc. This often excludes the humanities and social sciences. The author also raises the issue of journal paywalls and how it decreases access to researchers in countries without large research budges. But we need to do better on “open dissemination”, the article claims.

Sources

Hey, that was a good read! I agree with everything the author said. What’s more, it speaks to my research, because I’ve done a fair deal of science mapping myself at the Cyberinfrastructure for Network Science Center under Katy Börner. Great, I think, let’s take a look at the data they’re using, given Quartz’s mission statement about how they always use open data.

I want to see the data because I know a lot of scientific publication indexing sites do a poor job of indexing international publications, and I want to see how it accounts for that bias. I look at the bottom of the page.

Crap.

This post originally appeared at The Conversation. Follow @US_conversation on Twitter. We welcome your comments at ideas@qz.com.

Alright, no biggie, time to look at the original article on The Conversation, a website whose slogan is “Academic rigor, journalistic flair“. Neat, academic rigor, I like the sound of that.

I scroll to the bottom, looking for the source.

A longer version of this article originally appeared on the London School of Economics’ Impact Blog.

Hey, the LSE Impact blog! They usually publish great stuff surrounding metrics and the like. Cool, I’ll click the link to read the longer version. The author writes something interesting right up front:

What would it take to redraw the knowledge production map to realise a vision of a more equitable and accurate world of knowledge?

A more accurate world of knowledge? Was this map inaccurate in a way the earlier articles didn’t report? I read on.

Well, this version of the article goes on a little to say that people in the global south aren’t always publishing in “international” journals. That’s getting somewhere, maybe the map only shows “international journals”! (Though she never actually makes that claim). Interestingly, the author writes of literature in the global south:

Even when published, this kind of research is often not attributed to its actual authors. It has the added problem of often being embargoed, with researchers even having to sign confidentiality agreements or “official secrets acts” when they are given grants. This is especially bizarre in an era where the mantra of publically funded research being made available to the public has become increasingly accepted.

Amen to that. Authorship information and openness all the way!

So who made this map?

Oh, the original article (though not the one in Quantz or The Conversation) has a link right up front to something called “The World of Science“. The link doesn’t actually take you to the map pictured, it just takes you to a website called worldmapper that’s filled with maps, letting you fend for yourself. That’s okay, my google-fu is strong.

www.worldmapper.org
www.worldmapper.org

I type “science” in the search bar.

Found it! Map #205, created by no-author-name-listed. The caption reads:

Territory size shows the proportion of all scientific papers published in 2001 written by authors living there.

Also, it only covers “physics, biology, chemistry, mathematics, clinical medicine, biomedical research, engineering, technology, and earth and space sciences.” I dunno about you, but I can name at least 2.3 other types of science, but that’s cool.

In tiny letters near the bottom of the page, there are a bunch of options, including the ability to see the poster or download the data in Excel.

SUCCESS. ish.

Map of Science Poster from worldmapper.org
Map of Science Poster from worldmapper.org

Ahhhhh I found the source! I mean, it took a while, but here it is. You apparently had to click “Open PDF poster, designed for printing.” It takes you to a 2006 poster, which marks that it was made by the SASI Group from Sheffield and Mark Newman, famous and awesome complex systems scientist from Michigan. An all-around well-respected dude.

To recap, that’s a 7/11/2015 tweet, pointing to a 7/11/2015 article on Quartz, pointing to a 7/8/2015 article on The Conversation, pointing to a 4/29/2013 article on the LSE Impact Blog, pointing to a website made Thor-knows-when, pointing to a poster made in 2006 with data from 2001. And only the poster cites the name of the creative team who originally made the map. Blood and bloody ashes.

Intermission

Please take a moment out of your valuable time to watch this video clip from the BBC’s television adaptation of Douglas Adam’s Hitchhiker’s Guide to the Galaxy. I’ll wait.

If you’re hard-of-hearing, read some of the transcript instead.

What I’m saying is, the author of this map was “on display at the bottom of a locked filing cabinet stuck in a disused lavatory with a sign on the door saying beware of the leopard.”

The Saga Continues

Okay, at least I now can trust the creation process of the map itself, knowing Mark Newman had a hand in it. What about the data?

Helpfully, worldmapper.org has a link to the data as an Excel Spreadsheet. Let’s download and open it!

Frak. Frak frak frak frak frak.

My eyes.

Excel data for the science cartogram from worldmapper.org
Excel data for the science cartogram from worldmapper.org

Okay Scott. Deep breaths. You can brave the unicornfarts color scheme and find the actual source of the data. Be strong.

“See the technical notes” it says. Okay, I can do that. It reads:

Nearly two thirds of a million papers were published in enumerated science journals in 2001

Enumerated science journals? What does enumerated mean? Whatever, let’s read on.

The source of this data is the World Bank’s 2005 World Development Indicators, in the series on Scientific and technical journal articles (IP.JRN.ARTC.SC).

Okay, sweet, IP.JRN.ARTC.SC at the World Bank. I can Google that!

It brings me to the World Bank’s site on Scientific and technical journal articles. About the data it says:

Scientific and technical journal articles refer to the number of scientific and engineering articles published in the following fields: physics, biology, chemistry, mathematics, clinical medicine, biomedical research, engineering and technology, and earth and space sciences

Yep, knew that already, but it’s good to see the sources agreeing with each other.

I look for the data source to no avail, but eventually do see a small subtitle “National Science Foundation, Science and Engineering Indicators.”

Alright /me *rolls sleeves*, IRC-style.

Eventually, through the Googles, I find my way to what I assume is the original data source website, although at this point who the hell knows? NSF Science and Engineering Indicators 2006.

Want to know what I find? A 1,092-page report (honestly, see the pdfs, volumes 1 & 2) within which, presumably, I can find exactly what I need to know. In the 1,092-page report.

I start with Chapter 5: Academic Research and Development. Seems promising.

Three-quarters-of-the-way-down-the-page, I see it. It’s shimmering in blue and red and gold to my Excel-addled eyes.

S&E

Could this be it? Could this be the data source I was searching for, the Science Citation Index and the Social Sciences Citation Index? It sounds right! Remember the technical notes which states “Nearly two thirds of a million papers were published in enumerated science journals in 2001?” That fits with the number in the picture above! Let’s click on the link to the data.

There is no link to the data.

There is no reference to the data.

That’s OKAY. WE’RE ALRIGHT. THERE ARE DATA APPENDICES IT MUST BE THERE. EVEN THOUGH THIS IS A REAL WEBSITE WITH HYPERTEXT LINKS AND THEY DIDN’T LINK TO DATA IT’S PROBABLY IN THE APPENDICES RIGHT?

Do you think the data are in the section labeled “Tables” or “Appendix Tables“? Don’t you love life’s little mysteries?

(Hint: I checked. After looking at 14 potential tables in the “Tables” section, I decided it was in the “Appendix Tables” section.)

Success! The World Bank data is from Appendix Table 5-41, “S&E articles, by region and country/economy: 1988–2003”.

Wait a second, friends, this can’t be right. If this is from the Science Citation Index and the Social Science Citation Index, then we can’t really use these metrics as a good proxy for global scientific output, because the criteria for national inclusion in the index is apparently kind of weird and can skew the output results.

Also, and let me be very clear about this,

This dataset actually covers both science and social science. It is, you’ll recall, the Science Citation Index and the Social Sciences Citation Index. [edit: at least as far as I can tell. Maybe they used different data, but if they did, it’s World Bank’s fault for not making it clear. This is the best match I could find.]

In Short

Which brings us back to Do. The article on Quartz made (among other things) two claims: that the geographic inequality of scientific output is troubling, and that the map really ought to include social scientific output.

And I agree with both of these points! And all the nuanced discussion is respectable and well-needed.

But by looking at the data, I just learned that A) the data the map draws from is not really a great representation of global output, and B) social scientific output is actually included.

I leave you with the first gif I’ve ever posted on my blog:

source: http://s569.photobucket.com/user/SuperFlame64/media/kramer_screaming.gif.html real source: Seinfeld. Seriously, people.
source: http://s569.photobucket.com/user/SuperFlame64/media/kramer_screaming.gif.html
real source: Seinfeld. Seriously, people.

You know what’s cool? Ryan Cordell and friend’s Viral Texts project. It tracks how 19th-century U.S. newspapers used to copy texts from each other, little snippets of news or information, and republish them in their own publications. A single snippet of text could wind its way all across the country, sometimes changing a bit like a game of telephone, rarely-if-ever naming the original author.

—————————————————————————————————

(p.s. I don’t blame the people involved, doing the linking. It’s just the tumblr-world of 19th century newspapers we live in.)

[edit: I’m noticing some tweets are getting the wrong idea, so let me clarify: this post isn’t a negative reflection on the research therein, which is needed and done by good people. It’s frustration at the fact that we write in an environment that affords full references and rich hyperlinking, and yet we so often revert to context-free tumblr-like reblogging which separates text from context and data. We’re reverting to the affordances of 18th century letters, 19th century newspapers, 20th century academic articles, etc., and it’s frustrating.]

[edit 2: to further clarify, two recent tweets:

]