Teaching Yourself to Code in DH

tl;dr Book-length introductions to programming or analytic methods (math / statistics / etc.) aimed at or useful for humanists with limited coding experience.


I’m collecting programming & methodological textbooks for humanists as part of a reflective study on DH, but figured it’d also be useful for those interested in teaching themselves to code, or teachers who need a textbook for their class. Though I haven’t read them all yet, I’ve organized them into very imperfect categories and provided (hopefully) some useful comments. Short coding exercises, books that assume some pre-existing knowledge of coding, and theoretical introductions are not listed here.

Thanks to @Literature_Geek, @ProgHist, @heatherfro, @electricarchaeo, @digitaldante, @kintopp, @dmimno, & @collinj for their contributions to the growing list. In the interest of maintaining scope, not all of their suggestions appear below.

Historical Analysis

  • The Programming Historian, 1st edition (2007). William J. Turkel and Alan MacEachern.
    • An open access introduction to programming in Python. Mostly web scraping and basic text analysis. Probably best to look to newer resources, due to the date. Although it’s aimed at historians, the methods are broadly useful to all text-based DH.
  • The Programming Historian, 2nd edition (ongoing). Afanador-Llach, Maria JosĂ©, Antonio Rojas Castro, Adam Crymble, VĂ­ctor Gayol, Fred Gibbs, Caleb McDaniel, Ian Milligan, Amanda Visconti, and Jeri Wieringa, eds.
    • Constantly updating lessons, ostensibly aimed at historians, but useful to all of DH. Includes introductions to web development, text analysis, GIS, network analysis, etc. in multiple programming languages. Not a monograph, and no real order.
  • Computational Historical Thinking with Applications in R (ongoing). Lincoln Mullen.
    • A series of lessons in in R, still under development with quite a few chapters missing. Probably the only programming book aimed at historians that actually focuses on historical questions and approaches.
  • The Rubyist Historian (2004). Jason Heppler.
    • A short introduction to programming in Ruby. Again, ostensibly aimed at historians, but really just focused on the fundamentals of coding, and useful in that context.
  • Natural Language Processing for Historical Texts (2012). Michael Piotrowski.
    • About natural language processing, but not an introduction to coding. Instead, an introduction to the methodological approaches of natural language processing specific to historical texts (OCR, spelling normalization, choosing a corpus, part of speech tagging, etc.). Teaches a variety of tools and techniques.
  • The Historian’s Macroscope (2015). Graham, Milligan, & Weingart.
    • Okay I’m cheating a bit here! This isn’t teaching you to program, but Shawn, Ian, and I spent a while writing this intro to digital methods for historians, so I figured I’d sneak a link in.

Literary & Linguistic Analysis

  • Text Analysis with R for Students of Literature (2014). Matthew Jockers.
    • Step-by-step introduction to learning R, specifically focused on literary text analysis, both for close and distant reading, with primers on the statistical approaches being used. Includes approaches to, e.g., word frequency distribution, lexical variety, classification, and topic modeling.
  • The Art of Literary Text Analysis (ongoing). StĂ©fan Sinclair & Geoffrey Rockwell.
    • A growing, interactive textbook similar in scope to Jockers’ book (close & distant reading in literary analysis), but in Python rather than R. Heavily focused on the code itself, and includes such methods as topic modeling and sentiment analysis.
  • Statistics for Corpus Linguistics (1998). Michael Oakes.
    • Don’t know anything about this one, sorry!

General Digital Humanities

Many of the above books are focused on literary or historical analysis only in name, but are really useful for everyone in DH. The below are similar in scope, but don’t aim themselves at one particular group.

  • Humanities Data in R (2015). Lauren Tilton & Taylor Arnold.
    • General introduction to programming through R, and broadly focused on many approaches, including basic statistics, networks, maps, texts, and images. Teaches concepts and programmatic implementations.
  • Digital Research Methods with Mathematica (2015). William J. Turkel.
    • A Mathematica notebook (thus, not accessible unless you have an appropriate reader) teaching text, image, and geo-based analysis. Mathematica itself is an expensive piece of software without an institutional license, so this resource may be inaccessible to many learners. [NOTE: Arno Bosse wrote positive feedback on this textbook in a comment below.]
  • Exploratory Programming for the Arts and Humanities (2016). Nick Montfort.
    • An introduction to the fundamentals of programming specifically for arts and humanities, languages Python and Processing, that goes through statistics, text, sound, animation, images, and so forth. Much more expansive than many other options listed here, but not as focused on needs of text analysis (which is probably a good thing).
  • An Introduction to Text Analysis: A Coursebook (2016). Brandon Walsh & Sarah Horowitz.
    • A brief textbook with exercises and explanatory notes specific to text analysis for the study of literature and history. Not an introduction to programming, but covers some of the mathematical and methodological concepts used in these sorts of studies.
  • Python Programming for Humanists (ongoing). Folgert Karsdorp and Maarten van Gompel.
    • Interactive (Jupyter) notebooks teaching Python for statistical text analysis. Quite thorough, teaching methodological reasoning and examples, including quizzes and other lesson helpers, going from basic tokenization up through unsupervised learning, object-oriented programming, etc.

Statistical Methods & Machine Learning

  • Statistics for the Humanities (2014). John Canning.
    • Not an introduction to coding of any sort, but a solid intro to statistics geared at the sort of stats needed by humanists (archaeologists, literary theorists, philosophers, historians, etc.). Reading this should give you a solid foundation of statistical methods (sampling, confidence intervals, bias, etc.)
  • Data Mining: Practical Machine Learning Tools and Techniques, 4th edition (2016). Witten, Frank, Hall, & Pal.
    • A practical intro to machine learning in Weka, Java-based software for data mining and modeling. Not aimed at humanists, but legible to the dedicated amateur. It really gets into the weeds of how machine learning works.
  • Text Mining with R (2017). Julia Silge and David Robinson.
    • Introduction to text mining aimed at data scientists in the statistical programming language R. Some knowledge of R is expected; the authors suggest using R for Data Science (2016) by Grolemund & Wickham to get up to speed. This is for those interested in current data science coding best-practices, though it does not get as in-depth as some other texts focused on literary text analysis. Good as a solid base to learn from.
  • The Curious Journalist’s Guide to Data (2016). Jonathan Stray.
    • Not an intro to programming or math, but rather a good guide to quantitatively thinking through evidence and argument. Aimed at journalists, but of potential use to more empirically-minded humanists.
  • Six Septembers: Mathematics for the Humanist (2017). Patrick Juola & Stephen Ramsay.
    • Fantastic introduction to simple and advanced mathematics written by and for humanists. Approachable, prose-heavy, and grounded in humanities examples. Covers topics like algebra, calculus, statistics, differential equations. Definitely a foundations text, not an applications one.

Data Visualization, Web Development, & Related

  • D3.js in Action, 2nd edition (2017). Elijah Meeks.
    • Introduction to programmatic, online data visualization in javascript and the library D3.js. Not aimed at the humanities, but written by a digital humanist; easy to read and follow. The great thing about D3 is it’s a library for visualizing something in whatever fashion you might imagine, so this is a good book for those who want to design their own visualizations rather than using off-the-shelf tools.
  • Drupal for Humanists (2016). Quinn Dombrowski.
    • Full-length introduction to Drupal, a web platform that allows you to build “environments for gathering, annotating, arranging, and presenting their research and supporting materials” on the web. Useful for those interested in getting started with the creation of web-based projects but who don’t want to dive head-first into from-scratch web development.
  • (Xe)LaTeX appliquĂ© aux sciences humaines (2012). MaĂŻeul Rouquette, Brendan Chabannes et Enimie Rouquette.
    • French introduction to LaTeX for humanists. LaTeX is the primary means scientists use to prepare documents (instead of MS Word or similar software), which allows for more sustainable, robust, and easily typeset scholarly publications. If humanists wish to publish in natural (or some social) science journals, this is an important skill.

Submissions to DH2017 (pt. 1)

Like many times before, I’m analyzing the international digital humanities conference, this time the 2017 conference in MontrĂ©al. The data I collect is available to any conference peer reviewer, though I do a bunch of scraping, cleaning, scrubbing, shampooing, anonymizing, etc. before posting these results.

This first post covers the basic landscape of submissions to next year’s conference: how many submissions there are, what they’re about, and so forth.

The analysis is opinionated and sprinkled with my own preliminary interpretations. If you disagree with something or want to see more, comment below, and I’ll try to address it in the inevitable follow-up. If you want the data, too bad—since it’s only available to reviewers, there’s an expectation of privacy. If you are sad for political or other reasons and live near me, I will bring you chocolate; if you are sad and do not live near me, you should move to Pittsburgh. We have chocolate.

Submission Numbers & Types

I’ll be honest, I was surprised by this year’s submission numbers. This will be the first ADHO conference held in North America since it was held in Nebraska in 2013, and I expected an influx of submissions from people who haven’t been able to travel off the continent for interim events. I expected the biggest submission pool yet.

Submissions per year by type.
Submissions per year by type.

What we see, instead, are fewer submissions than KrakĂłw last year: 608 in all. The low number of submissions to Sydney was expected, given it was the first  conference held outside Europe or North America, but this year’s numbers suggests the DH Hype Machine might be cooling somewhat, after five years of rapid growth.

Annual presentations at DH conferences, compared to growth of DHSI in Victoria.
Annual presentations at DH conferences, compared to growth of DHSI in Victoria, 1999-2015.

We need some more years and some more DH-Hype-Machine Indicators to be sure, but I reckon things are slowing down.

The conference offers five submission tracks: Long Paper, Short Paper, Poster, Panel, and (new this year) Virtual Short Paper. The distribution is pretty consistent with previous years, with the only deviation being in Sydney in 2015. Apparently Australians don’t like short papers or posters?

I’ll be interested to see how the “Virtual Short Paper” works out. Since authors need to decide on this format before submitting, it doesn’t allow the flexibility of seeing if funding will become available over the course of the year. Still, it’s a step in the right direction, and I hope it succeeds.

Co-Authorship

More of the same! If nothing else, we get points for consistency.

Percent of Co-Authorships
Percent of Co-Authorships

Same as it ever was, nearly half of all submissions are by a single author. I don’t know if that’s because humanists need to justify their presentations to hiring and tenure committees who only respect single authorship, or if we’re just used to working alone. A full 80% of submissions have three or fewer authors, suggesting large teams are still not the norm, or that we’re not crediting all of the labor that goes into DH projects with co-authorships. [Post-publication note: See Adam Crymble’s comment, below, for important context]

Language, Topic, & Discipline

Authors choose from several possible submission languages. This year, 557 submissions were received in English, 40 in French, 7 in Spanish, 3 in Italian, and 1 in German. That’s the easy part.

The Powers That Be decided to make my life harder by changing up the categories authors can choose from for 2017. Thanks, Diane, ADHO, or whoever decided this.

In previous years, authors chose any number of keywords from a controlled vocabulary of about 100 possible topics that applied to their submission. Among other purposes, it helped match authors with reviewers. The potential topic list was relatively static for many years, allowing me to analyze the change in interest in topics over time.

This year, they added, removed, and consolidated a bunch of topics, as well as divided the controlled vocabulary into “Topics” (like metadata, morphology, and machine translation) and “Disciplines” (like disability studies, archaeology, and law). This is ultimately good for the conference, but makes it difficult for me to compare this against earlier years, so I’m holding off on that until another post.

But I’m not bitter.

This year’s options are at the bottom of this post in the appendix. Words in red were added or modified this year, and the last list are topics that used to exist, but no longer do.

So let’s take a look at this year’s breakdown by discipline.

Disciplinary breakdown of submissions
Disciplinary breakdown of submissions

Huh. “Computer science”—a topic which last year did not exist—represents nearly a third of submissions. I’m not sure how much this topic actually means anything. My guess is the majority of people using it are simply signifying the “digital” part of their “Digital Humanities” project, since the topic “Programming”—which existed in previous years but not this year—used to only connect to ~6% of submissions.

“Literary studies” represents 30% of all submissions, more than any previous year (usually around 20%), whereas “historical studies” has stayed stable with previous years, at around 20% of submissions. These two groups, however, can be pretty variable year-to-year, and I’m beginning to suspect that their use by authors is not consistent enough to take as meaningful. More on that in a later post.

That said, DH is clearly driven by lit, history, and library/information science. L/IS is a new and welcome category this year; I’ve always suspected that DHers are as much from L/IS as the humanities, and this lends evidence in that direction. Importantly, it also makes apparent a dearth in our disciplinary genealogies: when we trace the history of DH, we talk about the history of humanities computing, the history of the humanities, the history of computing, but rarely the history of L/IS.

I’ll have a more detailed breakdown later, but there were some surprises in my first impressions. “Film and Media Studies” is way up compared to previous years, as are other non-textual disciplines, which refreshingly shows (I hope) the rise of non-textual sources in DH. Finally. Gender studies and other identity- or intersectional-oriented submissions also seem to be on the rise (this may be an indication of US academic interests; we’ll need another few years to be sure).

If we now look at Topic choices (rather than Discipline choices, above), we see similar trends.

Topical distribution of submissions
Topical distribution of submissions

Again, these are just first impressions, there’ll be more soon. Text is still the bread and butter of DH, but we see more non-textual methods being used than ever. Some of the old favorites of DH, like authorship attribution, are staying pretty steady against previous years, whereas others, like XML and encoding, seem to be decreasing in interest year after year.

One last note on Topics and Disciplines. There’s a list of discontinued topics at the bottom of the appendix. Most of them have simply been consolidated into other categories, however one set is conspicuously absent: meta-discussions of DH. There are no longer categories for DH’s history, theory, how it’s taught, or its institutional support. These were pretty popular categories in previous years, and I’m not certain why they no longer exist. Perusing the submissions, there are certainly several that fall into these categories.

What’s Next

For Part 2 of this analysis, look forward to more thoughts on the topical breakdown of conference submissions; preliminary geographic and gender analysis of authors; and comparisons with previous years. After that, who knows? I take requests in the comments, but anyone who requests “Free Bird” is banned for life.

Appendix: Controlled Vocabulary

Words in red were added or modified this year, and the last list are topics that used to exist, but no longer do.

Topics

  • 3D Printing
  • agent modeling and simulation
  • archives, repositories, sustainability and preservation
  • audio, video, multimedia
  • authorship attribution / authority
  • bibliographic methods / textual studies
  • concording and indexing
  • content analysis
  • copyright, licensing, and Open Access
  • corpora and corpus activities
  • crowdsourcing
  • cultural and/or institutional infrastructure
  • data mining / text mining
  • data modeling and architecture including hypothesis-driven modeling
  • databases & dbms
  • digitisation – theory and practice
  • digitisation, resource creation, and discovery
  • diversity
  • encoding – theory and practice
  • games and meaningful play
  • geospatial analysis, interfaces & technology, spatio-temporal modeling/analysis & visualization
  • GLAM: galleries, libraries, archives, museums
  • hypertext
  • image processing
  • information architecture
  • information retrieval
  • interdisciplinary collaboration
  • interface & user experience design/publishing & delivery systems/user studies/user needs
  • internet / world wide web
  • knowledge representation
  • lexicography
  • linking and annotation
  • machine translation
  • metadata
  • mobile applications and mobile design
  • morphology
  • multilingual / multicultural approaches
  • natural language processing
  • networks, relationships, graphs
  • ontologies
  • project design, organization, management
  • query languages
  • scholarly editing
  • semantic analysis
  • semantic web
  • social media
  • software design and development
  • speech processing
  • standards and interoperability
  • stylistics and stylometry
  • teaching, pedagogy and curriculum
  • text analysis
  • text generation
  • universal/inclusive design
  • virtual and augmented reality
  • visualisation
  • xml

Disciplines

  • anthropology
  • archaeology
  • art history
  • asian studies
  • classical studies
  • computer science
  • creative and performing arts, including writing
  • cultural studies
  • design
  • disability studies
  • english studies
  • film and media studies
  • folklore and oral history
  • french studies
  • gender studies
  • geography
  • german studies
  • historical studies
  • italian studies
  • law
  • library & information science
  • linguistics
  • literary studies
  • medieval studies
  • music
  • near eastern studies
  • philology
  • philosophy
  • renaissance studies
  • rhetorical studies
  • sociology
  • spanish and spanish american studies
  • theology
  • translation studies

No Longer Exist

  • Digital Humanities – Facilities
  • Digital Humanities – Institutional Support
  • Digital Humanities – Multilinguality
  • Digital Humanities – Nature And Significance
  • Digital Humanities – Pedagogy And Curriculum
  • Genre-specific Studies: Prose, Poetry, Drama
  • History Of Humanities Computing/digital Humanities
  • Maps And Mapping
  • Media Studies
  • Other
  • Programming
  • Prosodic Studies
  • Publishing And Delivery Systems
  • Spatio-temporal Modeling, Analysis And Visualisation
  • User Studies / User Needs

Lessons From Digital History’s Antecedents

The below is the transcript from my October 29 keynote presented to the Creativity and The City 1600-2000 conference in Amsterdam, titled “Punched-Card Humanities”. I survey historical approaches to quantitative history, how they relate to the nomothetic/idiographic divide, and discuss some lessons we can learn from past successes and failures. For ≈200 relevant references, see this Zotero folder.


Title Slide
Title Slide

I’m here to talk about Digital History, and what we can learn from its quantitative antecedents. If yesterday’s keynote was framing our mutual interest in the creative city, I hope mine will help frame our discussions around the bottom half of the poster; the eHumanities perspective.

Specifically, I’ve been delighted to see at this conference, we have a rich interplay between familiar historiographic and cultural approaches, and digital or eHumanities methods, all being brought to bear on the creative city. I want to take a moment to talk about where these two approaches meet.

Yesterday’s wonderful keynote brought up the complicated goal of using new digital methods to explore the creative city, without reducing the city to reductive indices. Are we living up to that goal? I hope a historical take on this question might help us move in this direction, that by learning from those historiographic moments when formal methods failed, we can do better this time.

Creativity Conference Theme
Creativity Conference Theme

Digital History is different, we’re told. “New”. Many of us know historians who used computers in the 1960s, for things like demography or cliometrics, but what we do today is a different beast.

Commenting on these early punched-card historians, in 1999, Ed Ayers wrote, quote, “the first computer revolution largely failed.” The failure, Ayers, claimed, was in part due to their statistical machinery not being up to the task of representing the nuances of human experience.

We see this rhetoric of newness or novelty crop up all the time. It cropped up a lot in pioneering digital history essays by Roy Rosenzweig and Dan Cohen in the 90s and 2000s, and we even see a touch of it, though tempered, in this conference’s theme.

In yesterday’s final discussion on uncertainty, Dorit Raines reminded us the difference between quantitative history in the 70s and today’s Digital History is that today’s approaches broaden our sources, whereas early approaches narrowed them.

Slide (r)evolution
Slide (r)evolution

To say “we’re at a unique historical moment” is something common to pretty much everyone, everywhere, forever. And it’s always a little bit true, right?

It’s true that every historical moment is unique. Unprecedented. Digital History, with its unique combination of public humanities, media-rich interests, sophisticated machinery, and quantitative approaches, is pretty novel.

But as the saying goes, history never repeats itself, but it rhymes. Each thread making up Digital History has a long past, and a lot of the arguments for or against it have been made many times before. Novelty is a convenient illusion that helps us get funding.

Not coincidentally, it’s this tension I’ll highlight today: between revolution and evolution, between breaks and continuities, and between the historians who care more about what makes a moment unique, and those who care more about what connects humanity together.

To be clear, I’m operating on two levels here: the narrative and the metanarrative. The narrative is that the history of digital history is one of continuities and fractures; the metanarrative is that this very tension between uniqueness and self-similarity is what swings the pendulum between quantitative and qualitative historians.

Now, my claim that debates over continuity and discontinuity are a primary driver of the quantitative/qualitative divide comes a bit out of left field — I know — so let me back up a few hundred years and explain.

Chronology
Chronology

Francis Bacon wrote that knowledge would be better understood if it were collected into orderly tables. His plea extended, of course, to historical knowledge, and inspired renewed interest in a genre already over a thousand years old: tabular chronology.

These chronologies were world histories, aligning the pasts of several regions which each reconned the passage of time differently.

Isaac Newton inherited this tradition, and dabbled throughout his life in establishing a more accurate universal chronology, aligning Biblical history with Greek legends and Egyptian pharoahs.

Newton brought to history the same mind he brought to everything else: one of stars and calculations. Like his peers, Newton relied on historical accounts of astronomical observations to align simultaneous events across thousands of miles. Kepler and Scaliger, among others, also partook in this “scientific history”.

Where Newton departed from his contemporaries, however, was in his use of statistics for sorting out history. In the late 1500s, the average or arithmetic mean was popularized by astronomers as a way of smoothing out noisy measurements. Newton co-opted this method to help him estimate the length of royal reigns, and thus the ages of various dynasties and kingdoms.

On average, Newton figured, a king’s reign lasted 18-20 years. If the history books record 5 kings, that means the dynasty lasted between 90 and 100 years.

Newton was among the first to apply averages to fill in chronologies, though not the first to apply them to human activities. By the late 1600s, demographic statistics of contemporary life — of births, burials and the like — were becoming common. They were ways of revealing divinely ordered regularities.

Incidentally, this is an early example of our illustrious tradition of uncritically appropriating methods from the natural sciences. See? We’ve all done it, even Newton!  

Joking aside, this is an important point: statistical averages represented divine regularities. Human statistics began as a means to uncover universal truths, and they continue to be employed in that manner. More on that later, though.

Musgrave Quote

Newton’s method didn’t quite pass muster, and skepticism grew rapidly on the whole prospect of mathematical history.

Criticizing Newton in 1782, for example, Samuel Musgrave argued, in part, that there are no discernible universal laws of history operating in parallel to the universal laws of nature. Nature can be mathematized; people cannot.

Not everyone agreed. Francesco Algarotti passionately argued that Newton’s calculation of average reigns, the application of math to history, was one of his greatest achievements. Even Voltaire tried Newton’s method, aligning a Chinese chronology with Western dates using average length of reigns.

Nomothetic / Idiographic
Nomothetic / Idiographic

Which brings us to the earlier continuity/discontinuity point: quantitative history stirs debate in part because it draws together two activities Immanuel Kant sets in opposition: the tendency to generalize, and the tendency to specify.

The tendency to generalize, later dubbed Nomothetic, often describes the sciences: extrapolating general laws from individual observations. Examples include the laws of gravity, the theory of evolution by natural selection, and so forth.

The tendency to specify, later dubbed Idiographic, describes, mostly, the humanities: understanding specific, contingent events in their own context and with awareness of subjective experiences. This could manifest as a microhistory of one parish in the French Revolution, a critical reading of Frankenstein focused on gender dynamics, and so forth.  

These two approaches aren’t mutually exclusive, and they frequently come in contact around scholarship of the past. Paleontologists, for example, apply general laws of biology and geology to tell the specific story of prehistoric life on Earth. Astronomers, similarly, combine natural laws and specific observations to trace to origins of our universe.

Historians have, with cyclically recurring intensity, engaged in similar efforts. One recent nomothetic example is that of cliodynamics: the practitioners use data and simulations to discern generalities such as why nations fail or what causes war. Recent idiographic historians associate more with the cultural and theoretical turns in historiography, often focusing on microhistories or the subjective experiences of historical actors.

Both tend to meet around quantitative history, but the conversation began well before the urge to quantify. They often fruitfully align and improve one another when working in concert; for example when the historian cites a common historical pattern in order to highlight and contextualize an event which deviates from it.

But more often, nomothetic and idiographic historians find themselves at odds. Newton extrapolated “laws” for the length of kings, and was criticized for thinking mathematics had any place in the domain of the uniquely human. Newton’s contemporaries used human statistics to argue for divine regularities, and this was eventually criticized as encroaching on human agency, free will, and the uniqueness of subjective experience.

Bacon Taxonomy
Bacon Taxonomy

I’ll highlight some moments in this debate, focusing on English-speaking historians, and will conclude with what we today might learn from foibles of the quantitative historians who came before.

Let me reiterate, though, that quantitative is not nomothetic history, but they invite each other, so I shouldn’t be ahistorical by dividing them.

Take Henry Buckle, who in 1857 tried to bridge the two-culture divide posed by C.P. Snow a century later. He wanted to use statistics to find general laws of human progress, and apply those generalizations to the histories of specific nations.

Buckle was well-aware of historiography’s place between nomothetic and idiographic cultures, writing: “it is the business of the historian to mediate between these two parties, and reconcile their hostile pretensions by showing the point at which their respective studies ought to coalesce.”

In direct response, James Froud wrote that there can be no science of history. The whole idea of Science and History being related was nonsensical, like talking about the colour of sound. They simply do not connect.

This was a small exchange in a much larger Victorian debate pitting narrative history against a growing interest in scientific history. The latter rose on the coattails of growing popular interest in science, much like our debates today align with broader discussions around data science, computation, and the visible economic successes of startup culture.

This is, by the way, contemporaneous with something yesterday’s keynote highlighted: the 19th century drive to establish ‘urban laws’.

By now, we begin seeing historians leveraging public trust in scientific methods as a means for political control and pushing agendas. This happens in concert with the rise of punched cards and, eventually, computational history. Perhaps the best example of this historical moment comes from the American Census in the late 19th century.

19C Map
19C Map

Briefly, a group of 19th century American historians, journalists, and census chiefs used statistics, historical atlases, and the machinery of the census bureau to publicly argue for the disintegration of the U.S. Western Frontier in the late 19th century.

These moves were, in part, made to consolidate power in the American West and wrestle control from the native populations who still lived there. They accomplished this, in part, by publishing popular atlases showing that the western frontier was so fractured that it was difficult to maintain and defend. 1

The argument, it turns out, was pretty compelling.

Hollerith Cards
Hollerith Cards

Part of what drove the statistical power and scientific legitimacy of these arguments was the new method, in 1890, of entering census data on punched cards and processing them in tabulating machines. The mechanism itself was wildly successful, and the inventor’s company wound up merging with a few others to become IBM. As was true of punched-card humanities projects through the time of Father Roberto Busa, this work was largely driven by women.

It’s worth pausing to remember that the history of punch card computing is also a history of the consolidation of government power. Seeing like a computer was, for decades, seeing like a state. And how we see influences what we see, what we care about, how we think.  

Recall the Ed Ayers quote I mentioned at the beginning of his talk. He said the statistical machinery of early quantitative historians could not represent the nuance of historical experience. That doesn’t just mean the math they used; it means the actual machinery involved.

See, one of the truly groundbreaking punch card technologies at the turn of the century was the card sorter. Each card could represent a person, or household, or whatever else, which is sort of legible one-at-a-time, but unmanageable in giant stacks.

Now, this is still well before “computers”, but machines were being developed which could sort these cards into one of twelve pockets based on which holes were punched. So, for example, if you had cards punched for people’s age, you could sort the stacks into 10 different pockets to break them up by age groups: 0-9, 10-19, 20-29, and so forth.

This turned out to be amazing for eyeball estimates. If your 20-29 pocket was twice as full as your 10-19 pocket after all the cards were sorted, you had a pretty good idea of the age distribution.

Over the next 50 years, this convenience would shape the social sciences. Consider demographics or marketing. Both developed in the shadow of punch cards, and both relied heavily on what’s called “segmentation”, the breaking of society into discrete categories based on easily punched attributes. Age ranges, racial background, etc. These would be used to, among other things, determine who was interested in what products.

They’d eventually use statistics on these segments to inform marketing strategies.

But, if you look at the statistical tests that already existed at the time, these segmentations weren’t always the best way to break up the data. For example, age flows smoothly between 0 and 100; you could easily contrive a statistical test to show that, as a person ages, she’s more likely to buy one product over another, over a set of smooth functions.

That’s not how it worked though. Age was, and often still is, chunked up into ten or so distinct ranges, and those segments were each analyzed individually, as though they were as distinct from one another as dogs and cats. That is, 0-9 is as related to 10-19 as it is to 80-89.

What we see here is the deep influence of technological affordances on scholarly practice, and it’s an issue we still face today, though in different form.

As historians began using punch cards and social statistics, they inherited, or appropriated, a structure developed for bureaucratic government processing, and were rightly soon criticized for its dehumanizing qualities.

Pearson Stats

Unsurprisingly, given this backdrop, historians in the first few decades of the 20th century often shied away from or rejected quantification.

The next wave of quantitative historians, who reached their height in the 1930s, approached the problem with more subtlety than the previous generations in the 1890s and 1860s.

Charles Beard’s famous Economic Interpretation of the Constitution of the United States used economic and demographic stats to argue that the US Constitution was economically motivated. Beard, however, did grasp the fundamental idiographic critique of quantitative history, claiming that history was, quote:

“beyond the reach of mathematics — which cannot assign meaningful values to the imponderables, immeasurables, and contingencies of history.”

The other frequent critique of quantitative history, still heard, is that it uncritically appropriates methods from stats and the sciences.

This also wasn’t entirely true. The slide behind me shows famed statistician Karl Pearson’s attempt to replicate the math of Isaac Newton that we saw earlier using more sophisticated techniques.

By the 1940s, Americans with graduate training in statistics like Ernest Rubin were actively engaging historians in their own journals, discussing how to carefully apply statistics to historical research.

On the other side of the channel, the French Annales historians were advocating longue durée history; a move away from biographies to prosopographies, from events to structures. In its own way, this was another historiography teetering on the edge between the nomothetic and idiographic, an approach that sought to uncover the rhymes of history.

Interest in quantitative approaches surged again in the late 1950s, led by a new wave of Annales historians like Fernand Braudel and American quantitative manifestos like those by Benson, Conrad, and Meyer.

William Aydolette went so far as to point out that all historians implicitly quantify, when they use words like “many”, “average”, “representative”, or “growing” – and the question wasn’t can there be quantitative history, but when should formal quantitative methods be utilized?

By 1968, George Murphy, seeing the swell of interest, asked a very familiar question: why now? He asked why the 1960s were different from the 1860s or 1930s, why were they, in that historical moment, able to finally do it right? His answer was that it wasn’t just the new technologies, the huge datasets, the innovative methods: it was the zeitgeist. The 1960s was the right era for computational history, because it was the era of computation.

By the early 70s, there was a historian using a computer in every major history department. Quantitative history had finally grown into itself.

Popper Historicism
Popper Historicism

Of course, in retrospect, Murphy was wrong. Once the pendulum swung too far towards scientific history, theoretical objections began pushing it the other way.

In Poverty of Historicism, Popper rejected scientific history, but mostly as a means to reject historicism outright. Popper’s arguments represent an attack from outside the historiographic tradition, but one that eventually had significant purchase even among historians, as an indication of the failure of nomothetic approaches to culture. It is, to an extent, a return to Musgrave’s critique of Isaac Newton.

At the same time, we see growing criticism from historians themselves. Arthur Schlesinger famously wrote that “important questions are important precisely because they are not susceptible to quantitative answers.”

There was a converging consensus among English-speaking historians, as in the early 20th century, that quantification erased the essence of the humanities, that it smoothed over the very inequalities and historical contingencies we needed to highlight.

Barzun's Clio
Barzun’s Clio

Jacques Barzun summed it up well, if scathingly, saying history ought to free us from the bonds of the machine, not feed us into it.

The skeptics prevailed, and the pendulum swung the other way. The post-structural, cultural, and literary-critical turns in historiography pivoted away from quantification and computation. The final nail was probably Fogel and Engerman’s 1974 Time on the Cross, which reduced the Atlantic  slave-trade to economic figures, and didn’t exactly treat the subject with nuance and care.

The cliometricians, demographers, and quantitative historians didn’t disappear after the cultural turn, but their numbers shrunk, and they tended to find themselves in social science departments, or fled here to Europe, where social and economic historians were faring better.

Which brings us, 40 years on, to the middle of a new wave of quantitative or “formal method” history. Ed Ayers, like George Murphy before him, wrote, essentially, this time it’s different.

And he’s right, to a point. Many here today draw their roots not to the cliometricians, but to the very cultural historians who rejected quantification in the first place. Ours is a digital history steeped in the the values of the cultural turn, that respects social justice and seeks to use our approaches to shine a light on the underrepresented and the historically contingent.

But that doesn’t stop a new wave of critiques that, if not repeating old arguments, certainly rhymes. Take Johanna Drucker’s recent call to rebrand data as capta, because when we treat observations objectively as if it were the same as the phenomena observed, we collapse the critical distance between the world and our interpretation of it. And interpretation, Drucker contends, is the foundation on which humanistic knowledge is based.

Which is all to say, every swing of the pendulum between idiographic and nomothetic history was situated in its own historical moment. It’s not a clock’s pendulum, but Foucault’s pendulum, with each swing’s apex ending up slightly off from the last. The issues of chronology and astronomy are different from those of eugenics and manifest destiny, which are themselves different from the capitalist and dehumanizing tendencies of 1950s mainframes.

But they all rhyme. Quantitative history has failed many times, for many reasons, but there are a few threads that bind them which we can learn from — or, at least, a few recurring mistakes we can recognize in ourselves and try to avoid going forward.

We won’t, I suspect, stop the pendulum’s inevitable about-face, but at least we can continue our work with caution, respect, and care.

Which is to be Master?
Which is to be Master?

The lesson I’d like to highlight may be summed up in one question, asked by Humpty Dumpty to Alice: which is to be master?

Over several hundred years of quantitative history, the advice of proponents and critics alike tends to align with this question. Indeed in 1956, R.G. Collingwood wrote specifically “statistical research is for the historian a good servant but a bad master,” referring to the fact that statistical historical patterns mean nothing without historical context.

Schlesinger, the guy who I mentioned earlier who said historical questions are interesting precisely because they can’t be quantified, later acknowledged that while quantitative methods can be useful, they’ll lead historians astray. Instead of tackling good questions, he said, historians will tackle easily quantifiable ones — and Schlesinger was uncomfortable by the tail wagging the dog.

Which is to be master - questions
Which is to be master – questions

I’ve found many ways in which historians have accidentally given over agency to their methods and machines over the years, but these five, I think, are the most relevant to our current moment.

Unfortunately since we running out of time, you’ll just have to trust me that these are historically recurring.

Number 1 is the uncareful appropriation of statistical methods for historical uses. It controls us precisely because it offers us a black box whose output we don’t truly understand.

A common example I see these days is in network visualizations. People visualize nodes and edges using what are called force-directed layouts in Gephi, but they don’t exactly understand what those layouts mean. As these layouts were designed, physical proximity of nodes are not meant to represent relatedness, yet I’ve seen historians interpret two neighboring nodes as being related because of their visual adjacency.

This is bad. It’s false. But because we don’t quite understand what’s happening, we get lured by the black box into nonsensical interpretations.

The second way methods drive us is in our reliance on methodological imports. That is, we take the time to open the black box, but we only use methods that we learn from statisticians or scientists. Even when we fully understand the methods we import, if we’re bound to other people’s analytic machinery, we’re bound to their questions and biases.

Take the example I mentioned earlier, with demographic segmentation, punch card sorters, and its influence on social scientific statistics. The very mechanical affordances of early computers influence the sort of questions people asked for decades: how do discrete groups of people react to the world in different ways, and how do they compare with one another?

The next thing to watch out for is naive scientism. Even if you know the assumptions of your methods, and you develop your own techniques for the problem at hand, you still can fall into the positivist trap that Johanna Drucker warns us about — collapsing the distance between what we observe and some underlying “truth”.

This is especially difficult when we’re dealing with “big data”. Once you’re working with so much material you couldn’t hope to read it all, it’s easy to be lured into forgetting the distance between operationalizations and what you actually intend to measure.

For instance, if I’m finding friendships in Early Modern Europe by looking for particular words being written in correspondences, I will completely miss the existence of friends who were neighbors, and thus had no reason to write letters for us to eventually read.

A fourth way we can be mislead by quantitative methods is the ease with which they lend an air of false precision or false certainty.

This is the problem Matthew Lincoln and the other panelists brought up yesterday, where missing or uncertain data, once quantified, falsely appears precise enough to make comparisons.

I see this mistake crop up in early and recent quantitative histories alike; we measure, say, the changing rate of transnational shipments over time, and notice a positive trend. The problem is the positive difference is quite small, easily attributable to error, but because numbers are always precise, it still feels like we’re being more precise than doing a qualitative assessment. Even when it’s unwarranted.

The last thing to watch out for, and maybe the most worrisome, is the blinders quantitative analysis places on historians who don’t engage in other historiographic methods. This has been the downfall of many waves of quantitative history in the past; the inability to care about or even see that which can’t be counted.

This was, in part, was what led Time on the Cross to become the excuse to drive historians from cliometrics. The indicators of slavery that were measurable were sufficient to show it to have some semblance of economic success for black populations; but it was precisely those aspects of slavery they could not measure that were the most historically important.

So how do we regain mastery in light of these obstacles?

Which is to be master - answers
Which is to be master – answers

1. Uncareful Appropriation – Collaboration

Regarding the uncareful appropriation of methods, we can easily sidestep the issue of accidentally misusing a method by collaborating with someone who knows how the method works. This may require a translator; statisticians can as easily misunderstand historical problems as historians can misunderstand statistics.

Historians and statisticians can fruitfully collaborate, though, if they have someone in the middle trained to some extent in both — even if they’re not themselves experts. For what it’s worth, Dutch institutions seem to be ahead of the game in this respect, which is something that should be fostered.

2. Reliance on Imports – Statistical Training

Getting away from reliance on disciplinary imports may take some more work, because we ourselves must learn the approaches well enough to augment them, or create our own. Right now in DH this is often handled by summer institutes and workshop series, but I’d argue those are not sufficient here. We need to make room in our curricula for actual methods courses, or even degrees focused on methodology, in the same fashion as social scientists, if we want to start a robust practice of developing appropriate tools for our own research.

3. Naive Scientism – Humanities History

The spectre of naive scientism, I think, is one we need to be careful of, but we are also already well-equipped to deal with it. If we want to combat the uncareful use of proxies in digital history, we need only to teach the history of the humanities; why the cultural turn happened, what’s gone wrong with positivistic approaches to history in the past, etc.

Incidentally, I think this is something digital historians already guard well against, but it’s still worth keeping in mind and making sure we teach it. Particularly, digital historians need to remain aware of parallel approaches from the past, rather than tracing their background only to the textual work of people like Roberto Busa in Italy.

4. False Precision & Certainty – Simulation & Triangulation

False precision and false certainty have some shallow fixes, and some deep ones. In the short term, we need to be better about understanding things like confidence intervals and error bars, and use methods like what Matthew Lincoln highlighted yesterday.

In the long term, though, digital history would do well to adopt triangulation strategies to help mitigate against these issues. That means trying to reach the same conclusion using multiple different methods in parallel, and seeing if they all agree. If they do, you can be more certain your results are something you can trust, and not just an accident of the method you happened to use.

5. Quantitative Blinders – Rejecting Digital History

Avoiding quantitative blinders – that is, the tendency to only care about what’s easily countable – is an easy fix, but I’m afraid to say it, because it might put me out of a job. We can’t call what we do digital history, or quantitative history, or cliometrics, or whatever else. We are, simply, historians.

Some of us use more quantitative methods, and some don’t, but if we’re not ultimately contributing to the same body of work, both sides will do themselves a disservice by not bringing every approach to bear in the wide range of interests historians ought to pursue.

Qualitative and idiographic historians will be stuck unable to deal with the deluge of material that can paint us a broader picture of history, and quantitative or nomothetic historians will lose sight of the very human irregularities that make history worth studying in the first place. We must work together.

If we don’t come together, we’re destined to remain punched-card humanists – that is, we will always be constrained and led by our methods, not by history.

Creativity Theme Again
Creativity Theme Again

Of course, this divide is a false one. There are no purely quantitative or purely qualitative studies; close-reading historians will continue to say things like “representative” or “increasing”, and digital historians won’t start publishing graphs with no interpretation.

Still, silos exist, and some of us have trouble leaving the comfort of our digital humanities conferences or our “traditional” history conferences.

That’s why this conference, I think, is so refreshing. It offers a great mix of both worlds, and I’m privileged and thankful to have been able to attend. While there are a lot of lessons we can still learn from those before us, from my vantage point, I think we’re on the right track, and I look forward to seeing more of those fruitful combinations over the course of today.

Thank you.

Notes:

  1. This account is influenced from some talks by Ben Schmidt. Any mistakes are from my own faulty memory, and not from his careful arguments.

“Digital History” Can Never Be New

If you claim computational approaches to history (“digital history”) lets historians ask new types of questions, or that they offer new historical approaches to answering or exploring old questions, you are wrong. You’re not actually wrong, but you are institutionally wrong, which is maybe worse.

This is a problem, because rhetoric from practitioners (including me) is that we can bring some “new” to the table, and when we don’t, we’re called out for not doing so. The exchange might (but probably won’t) go like this:

Digital Historian: And this graph explains how velociraptors were of utmost importance to Victorian sensibilities.

Historian in Audience: But how is this telling us anything we haven’t already heard before? Didn’t John Hammond already make the same claim?

DH: That’s true, he did. One thing the graph shows, though, is that velicoraptors in general tend to play much more unimportant roles across hundreds of years, which lends support to the Victorian thesis.

HiA: Yes, but the generalized argument doesn’t account for cultural differences across those times, so doesn’t meaningfully contribute to this (or any other) historical conversation.


New Questions

History (like any discipline) is made of people, and those people have Ideas about what does or doesn’t count as history (well, historiography, but that’s a long word so let’s ignore it). If you ask a new type of question or use a new approach, that new thing probably doesn’t fit historians’ Ideas about proper history.

Take culturomics. They make claims like this:

The age of peak celebrity has been consistent over time: about 75 years after birth. But the other parameters have been changing. Fame comes sooner and rises faster. Between the early 19th century and the mid-20th century, the age of initial celebrity declined from 43 to 29 years, and the doubling time fell from 8.1 to 3.3 years.

Historians saw those claims and asked “so what”? It’s not interesting or relevant according to the things historians usually consider interesting or relevant, and it’s problematic in ways historians find things problematic. For example, it ignores cultural differences, does not speak to actual human experiences, and has nothing of use to say about a particular historical moment.

It’s true. Culturomics-style questions do not fit well within a humanities paradigm (incommensurable, anyone?). By the standard measuring stick of what makes a good history project, culturomics does not measure up. A new type of question requires a new measuring stick; in this case, I think a good one for culturomics-style approaches is the extent to which they bridge individual experiences with large-scale social phenomena, or how well they are able to reconcile statistical social regularities with free or contingent choice.

The point, though, is a culturomics presentation would fit few of the boxes expected at a history conference, and so would be considered a failure. Rightly so, too—it’s a bad history presentation. But what culturomics is successfully doing is asking new types of questions, whether or not historians find them legitimate or interesting. Is it good culturomics?

To put too fine a point on it, since history is often a question-driven discipline, new types of questions that are too different from previous types are no longer legitimately within the discipline of history, even if they are intrinsically about human history and do not fit in any other discipline.

What’s more, new types of questions may appear simplistic by historian’s standards, because they fail at fulfilling even the most basic criteria usually measuring historical worth. It’s worth keeping in mind that, to most of the rest of the world, our historical work often fails at meeting their criteria for worth.

New Approaches

New approaches to old questions share a similar fate, but for different reasons. That is, if they are novel, they are not interesting, and if they are interesting, they are not novel.

Traditional historical questions are, let’s face it, not particularly new. Tautologically. Some old questions in my field are: what role did now-silent voices play in constructing knowledge-making instruments in 17th century astronomy? How did scholarship become institutionalized in the 18th century? Why was Isaac Newton so annoying?

My own research is an attempt to provide a broader view of those topics (at least, the first two) using computational means. Since my topical interest has a rich tradition among historians, it’s unlikely any of my historically-focused claims (for example, that scholarly institutions were built to replace the really complicated and precarious role people played in coordinating social networks) will be without precedent.

After decades, or even centuries, of historical work in this area, there will always be examples of historians already having made my claims. My contribution is the bolstering of a particular viewpoint, the expansion of its applicability, the reframing of a discussion. Ultimately, maybe, I convince the world that certain social network conditions play an important role in allowing scholarly activity to be much more successful at its intended goals. My contribution is not, however, a claim that is wholly without precedent.

But this is a problem, since DH rhetoric, even by practitioners, can understandably lead people to expect such novelty. Historians in particular are very good at fitting old patterns to new evidence. It’s what we’re trained to do.

Any historical claim (to an acceptable question within the historical paradigm) can easily be countered with “but we already knew that”. Either the question’s been around long enough that every plausible claim has been covered, or the new evidence or theory is similar enough to something pre-existing that it can be taken as precedent.

The most masterful recent discussion of this topic was Matthew Lincoln’s Confabulation in the humanities, where he shows how easy it is to make up evidence and get historians to agree that they already knew it was true.

To put too fine a point on it, new approaches to old historical questions are destined to produce results which conform to old approaches; or if they don’t, it’s easy enough to stretch the old & new theories together until they fit. New approaches to old questions will fail at producing completely surprising results; this is a bad standard for historical projects. If a novel methodology were to create truly unrecognizable results, it is unlikely those results would be recognized as “good history” within the current paradigm. That is, historians would struggle to care.

What Is This Beast?

What is this beast we call digital history? Boundary-drawing is a tried-and-true tradition in the humanities, digital or otherwise. It’s theoretically kind of stupid but practically incredibly important, since funding decisions, tenure cases, and similar career-altering forces are at play. If digital history is a type of history, it’s fundable as such, tenurable as such; if it isn’t, it ain’t. What’s more, if what culturomics researchers are doing are also history, their already-well-funded machine can start taking slices of the sad NEH pie.

Artist's rendition of sad NEH pie. [via]
Artist’s rendition of sad NEH pie. [via]
So “what counts?” is unfortunately important to answer.

This discussion around what is “legitimate history research” is really important, but I’d like to table it for now, because it’s so often conflated with the discussion of what is “legitimate research” sans history. The former question easily overshadows the latter, since academics are mostly just schlubs trying to make a living.

For the last century or so, history and philosophy of science have been smooshed together in departments and conferences. It’s caused a lot of concern. Does history of science need philosophy of science? Does philosophy of science need history of science? What does it mean to combine the two? Is what comes out of the middle even useful?

Weirdly, the question sometimes comes down to “does history and philosophy of science even exist?”. It’s weird because people identify with that combined title, so I published a citation analysis in Erkenntnis a few years back that basically showed that, indeed, there is an area between the two communities, and indeed those people describe themselves as doing HPS, whatever that means to them.

Look! Right in the middle there, it's history and philosophy of science.
Look! Right in the middle there, it’s history and philosophy of science.

I bring this up because digital history, as many of us practice it, leaves us floating somewhere between public engagement, social science, and history. Culturomics occupies a similar interstitial space, though inching closer to social physics and complex systems.

From this vantage point, we have a couple of options. We can say digital history is just history from a slightly different angle, and try to be evaluated by standard historical measuring sticks—which would make our work easily criticized as not particularly novel. Or we can say digital history is something new, occupying that in-between space—which could render the work unrecognizable to our usual communities.

The either/or proposition is, of course, ludicrous. The best work being done now skirts the line, offering something just novel enough to be surprising, but not so out of traditional historical bounds as to be grouped with culturomics. But I think we need to more deliberate and organized in this practice, lest we want to be like History and Philosophy of Science, still dealing with basic questions of legitimacy fifty years down the line.

In the short term, this probably means trying not just to avoid the rhetoric of newness, but to actively curtail it. In the long term, it may mean allying with like-minded historians, social scientists, statistical physicists, and complexity scientists to build a new framework of legitimacy that recognizes the forms of knowledge we produce which don’t always align with historiographic standards. As Cassidy Sugimoto and I recently wrote, this often comes with journals, societies, and disciplinary realignment.

The least we can do is steer away from a novelty rhetoric, since what is novel often isn’t history, and what is history often isn’t novel.


“Branding” – An Addendum

After writing this post, I read Amardeep Singh’s call to, among other things, avoid branding:

Here’s a way of thinking that might get us past this muddle (and I think I agree with the authors that the hype around DH is a mistake): let’s stop branding our scholarship. We don’t need Next Big Things and we don’t need Academic Superstars, whether they are DH Superstars or Theory Superstars. What we do need is to find more democratic and inclusive ways of thinking about the value of scholarship and scholarly communities.

This is relevant here, and good, but tough to reconcile with the earlier post. In an ideal world, without disciplinary brandings, we can all try to be welcoming of works on their own merits, without relying our preconceived disciplinary criteria. In the present condition, though, it’s tough to see such an environment forming. In that context, maybe a unified digital history “brand” is the best way to stay afloat. This would build barriers against whatever new thing comes along next, though, so it’s a tough question.

Summary: Martin & Runyon’s “Digital Humanities, Digital Hegemony”

Today’s post just summarizes an article recently shared with me, as an attempt to boost the signal:

Those following along at home know I’ve been exploring how digital humanities infrastructure reinforces pre-existing cultural biases, most recently with Nickoal Eichmann & Jeana Jorgensen looking at DH Conferences, 2000-2015.

One limitation of our study is we know very little about the content of conference presentations or the racial identities of authors, which means we can’t assess bias in those directions. John D. Martin III & Carolyn Runyon recently published preliminary results more thoroughly addressing race & gender in DH from a funding perspective, and focused on the content of grants:

Martin, John D., III, and Carolyn Runyon. “Digital Humanities, Digital Hegemony: Exploring Funding Practices and Unequal Access in the Digital Humanities.” SIGCAS Computers and Society. 46, no. 1 (March 2016): 20–26. doi:10.1145/2908216.2908219.

By hand-categorizing 656 DH-oriented NEH grants from 2007-2016, totaling $225 million, Martin & Runyon found 110 projects whose focus involved gender or individuals of a certain gender, and 228 which focused on race/ethnicity or individuals identifiable with particular races/ethnicities.

From the article
From the article

Major findings include:

  • Twice as much money goes to studying men than to women.
  • On average, individual projects about women are better-funded.
  • The top three race/ethnicity categories by funding amount are White ($21 million), Asian ($7 million), and Black ($6.5 million).
  •  White men are discussed as individuals, and women and non-white people are focused on as groups.

Their results fit well with what I and others have found, which is that DH propagates the same cultural bias found elsewhere within and outside academia.

A next step, vital to this project, is to find equivalent metrics for other disciplines and data sources. Until we get a good baseline, we won’t actually know if our interventions are improving the situation. It’s all well and good to say “things are bad”, but until we know the compared-to-what, we won’t have a reliable way of testing what works and what doesn’t.

Representation at Digital Humanities Conferences (2000-2015)

Nickoal Eichmann (corresponding author), Jeana Jorgensen, Scott B. Weingart 1

NOTE: This is a pre-peer reviewed draft submitted for publication in Feminist Debates in Digital Humanities, eds. Jacque Wernimont and Elizabeth Losh, University of Minnesota Press (2017). Comments are welcome, and a downloadable dataset / more figures are forthcoming. This chapter will be released alongside another on the history of DH conferences, co-authored by Weingart & Eichmann (forthcoming), which will go into further detail on technical aspects of this study, including the data collection & statistics. Many of the materials first appeared on this blog. To cite this preprint, use the figshare DOI:  https://dx.doi.org/10.6084/m9.figshare.3120610.v1

Abstract

Digital Humanities (DH) is said to have a light side and a dark side. Niceness, globality, openness, and inclusivity sit at one side of this binary caricature; commodification, neoliberalism, techno-utopianism, and white male privilege sit at the other. At times, the plurality of DH embodies both descriptions.

We hope a diverse and critical DH is a goal shared by all. While DH, like the humanities writ large, is not a monolith, steps may be taken to improve its public face and shared values through positively influencing its communities. The Alliance of Digital Humanities Organizations’ (ADHO’s) annual conference hosts perhaps the largest such community. As an umbrella organization of six international digital humanities constituent organizations, as well as 200 DH centers in a few dozen countries, ADHO and its conference ought to represent the geographic, disciplinary, and demographic diversity of those who identify as digital humanists.

The annual conference offers insight into how the world sees DH. While it may not represent the plurality of views held by self-described digital humanists, the conference likely influences the values of its constituents. If the conference glorifies Open Access, that value will be taken up by its regular attendees; if the conference fails to prioritize diversity, this too will be reinforced.

This chapter explores fifteen years of DH conferences, presenting a quantified look at the values implicitly embedded in the event. Women are consistently underrepresented, in spite of the fact that the most prominent figures at the conference are as likely women as men. The geographic representation of authors has become more diverse over time—though authors with non-English names are still significantly less likely to pass peer review. The topical landscape is heavily gendered, suggesting a masculine bias may be built into the value system of the conference itself. Without data on skin color or ethnicity, we are unable to address racial or related diversity and bias here.

There have been some improvements over time and, especially recently, a growing awareness of diversity-related issues. While many of the conference’s negative traits are simply reflections of larger entrenched academic biases, this is no comfort when self-reinforcing biases foster a culture of microaggression and white male privilege. Rather than using this study as an excuse to write off DH as just another biased community, we offer statistics, critiques, and suggestions as a vehicle to improve ADHO’s conference, and through it the rest of self-identified Digital Humanities.

Introduction

Digital humanities (DH), we are told, exists under a “big tent”, with porous borders, little gatekeeping, and, heck, everyone’s just plain “nice”. Indeed, the term itself is not used definitionally, but merely as a “tactical convenience” to get stuff done without worrying so much about traditional disciplinary barriers. DH is “global”, “public”, and diversely populated. It will “save the humanities” from its crippling self-reflection (cf. this essay), while simultaneously saving the computational social sciences from their uncritical approaches to data. DH contains its own mirror: it is both humanities done digitally, and the digital as scrutinized humanistically. As opposed to the staid, backwards-looking humanities we are used to, the digital humanities “experiments”, “plays”, and even “embraces failure” on ideological grounds. In short, we are the hero Gotham needs.

Digital Humanities, we are told, is a narrowly-defined excuse to push a “neoliberal agenda”, a group of “bullies” more interested in forcing humanists to code than in speaking truth to power. It is devoid of cultural criticism, and because of the way DHers uncritically adopt tools and methods from the tech industry, they in fact often reinforce pre-existing power structures. DH is nothing less than an unintentionally rightist vehicle for techno-utopianism, drawing from the same font as MOOCs and complicit in their devaluing of education, diversity, and academic labor. It is equally complicit in furthering both the surveillance state and the surveillance economy, exemplified in its stunning lack of response to the Snowden leaks. As a progeny of the computer sciences, digital humanities has inherited the same lack of gender and racial diversity, and any attempt to remedy the situation is met with incredible resistance.

The truth, as it so often does, lies somewhere in the middle of these extreme caricatures. It’s easy to ascribe attributes to Digital Humanities synecdochically, painting the whole with the same brush as one of its constituent parts. One would be forgiven, for example, for coming away from the annual international ADHO Digital Humanities conference assuming DH were a parade of white men quantifying literary text. An attendee of HASTAC, on the other hand, might leave seeing DH as a diverse community focused on pedagogy, but lacking in primary research. Similar straw-snapshots may be drawn from specific journals, subcommunities, regions, or organizations.

But these synecdoches have power. Our public face sets the course of DH, via who it entices to engage with us, how it informs policy agendas and funding allocations, and who gets inspired to be the next generation of digital humanists. Especially important is the constituency and presentation of the annual Digital Humanities conference. Every year, several hundred students, librarians, staff, faculty, industry professionals, administrators and researchers converge for the conference, organized by the Alliance of Digital Humanities Organizations (ADHO). As an umbrella organization of six international digital humanities constituent organizations, as well as 200 DH centers in a few dozen countries, ADHO and its conference ought to represent the geographic, disciplinary, and demographic diversity of those who identify as digital humanists. And as DH is a community that prides itself on its activism and its social/public goals, if the annual DH conference does not celebrate this diversity, the DH community may suffer a crisis of identity (…okay, a bigger crisis of identity).

So what does the DH conference look like, to an outsider? Is it diverse? What topics are covered? Where is it held? Who is participating, who is attending, and where are they coming from? This essay offers incomplete answers to these questions for fifteen years of DH conferences (2000-2015), focusing particularly on DH2013 (Nebraska, USA), DH2014 (Lausanne, Switzerland), and DH2015 (Sydney, Australia). 2 We do so with a double-agenda: (1) to call out the biases and lack of diversity at ADHO conferences in the earnest hope it will help improve future years’ conferences, and (2) to show that simplistic, reductive quantitative methods can be applied critically, and need not feed into techno-utopic fantasies or an unwavering acceptance of proxies as a direct line to Truth. By “distant reading” DH and turning our “macroscopes” on ourselves, we offer a critique of our culture, and hopefully inspire fruitful discomfort in DH practitioners who apply often-dehumanizing tools to their subjects, but have not themselves fallen under the same distant gaze.

Among other findings, we observe a large gender gap for authorship that is not mirrored among those who simply attend the conference. We also show a heavily gendered topical landscape, which likely contributes to topical biases during peer review. Geographic diversity has improved over fifteen years, suggesting ADHO’s strategy to expand beyond the customary North American / European rotation was a success. That said, there continues to be a visible bias against non-English names in the peer review process. We could not get data on ethnicity, race, or skin color, but given our regional and name data, as well as personal experience, we suspect in this area, diversity remains quite low.

We do notice some improvement over time and, especially in the last few years, a growing awareness of our own diversity problems. The #whatifDH2016 3 hashtag, for example, was a reaction to an all-male series of speakers introducing DH2015 in Sydney. The hashtag caught on and made it to ADHO’s committee on conferences, who will use it in planning future events. Our remarks here are in the spirit of #whatifDH2016; rather than using this study as an excuse to defame digital humanities, we hope it becomes a vehicle to improve ADHO’s conference, and through it the rest of our community.

Social Justice and Equality in the Digital Humanities

Diversity in the Academy

In order to contextualize gender and ethnicity in the DH community, we must take into account developments throughout higher education. This is especially important since much of DH work is done in university and other Ivory Tower settings. Clear progress has been made from the times when all-male, all-white colleges were the norm, but there are still concerns about the marginalization of scholars who are not white, male, able-bodied, heterosexual, or native English-speakers. Many campuses now have diversity offices and have set diversity-related goals at both the faculty and student levels (for example, see the Ohio State University’s diversity objectives and strategies 2007-12). On the digital front, blogs such as Conditionally Accepted, Fight the Tower, University of Venus, and more all work to expose the normative biases in academia through activist dialogue.

From both a historical and contemporary lens, there is data supporting the clustering of women and other minority scholars in certain realms of academia, from specific fields and subjects to contingent positions. When it comes to gender, the phrase “feminization” has been applied both to academia in general and to specific fields. It contains two important connotations: that of an area in which women are in the majority, and the sense of a change over time, such that numbers of women participants are increasing in relation to men (Leathwood and Read 2008, 10). It can also signal a less quantitative shift in values, “whereby ‘feminine’ values, concerns, and practices are seen to be changing the culture of an organization, a field of practice or society as a whole” (ibid).

In terms of specific disciplines, the feminization of academia has taken a particular shape. Historian Lynn Hunt suggests the following propositions about feminization in the humanities and history specifically: the feminization of history parallels what is happening in the social sciences and humanities more generally; the feminization of the social sciences and humanities is likely accompanied by a decline in status and resources; and other identity categories, such as ethnic minority status and age/generation, also interact with feminization in ways that are still becoming coherent.

Feminization has clear consequences for the perception and assignation of value of a given field. Hunt writes: “There is a clear correlation between relative pay and the proportion of women in a field; those academic fields that have attracted a relatively high proportion of women pay less on average than those that have not attracted women in the same numbers.” Thus, as we examine the topics that tend to be clustered by gender in DH conference submissions, we must keep in mind the potential correlations of feminization and value, though it is beyond the scope of this paper to engage in chicken-or-egg debates about the causal relationship between misogyny and the devaluing of women’s labor and women’s topics.

There is no obvious ethnicity-based parallel to the concept of the feminization of academia; it wouldn’t be culturally intelligible to talk about the “people-of-colorization of academia”, or the “non-white-ization of academia.” At any rate, according to a U.S. Department of Education survey, in 2013 79% of all full-time faculty in degree-granting postsecondary institutions were white. The increase of non-white faculty from 2009 (19.2% of the whole) to 2013 (21.5%) is very small indeed.

Why does this matter? As Jeffrey Milem, Mitchell Chang, and Anthony Lising Antonio write in regard to faculty of color, “Having a diverse faculty ensures that students see people of color in roles of authority and as role models or mentors. Faculty of color are also more likely than other faculty to include content related to diversity in their curricula and to utilize active learning and student-centered teaching techniques…a coherent and sustained faculty diversity initiative must exist if there is to be any progress in diversifying the faculty” (25). By centering marginalized voices, scholarly institutions have the ability to send messages about who is worthy of inclusion.

Recent Criticisms of Diversity in DH

In terms of DH specifically, diversity within the community and conferences has been on the radar for several years, and has recently gained special attention, as digital humanists and other academics alike have called for critical and feminist engagement in diversity and a move away from what seems to be an exclusionary culture. In January 2011, THATCamp SoCal included a section called “Diversity in DH,” in which participants explored the lack of openness in DH and, in the end, produced a document, “Toward an Open Digital Humanities” that summarized their discussions. The “Overview” in this document mirrors the same conversation we have had for the last several years:

We recognize that a wide diversity of people is necessary to make digital humanities function. As such, digital humanities must take active strides to include all the areas of study that comprise the humanities and must strive to include participants of diverse age, generation, sex, skill, race, ethnicity, sexuality, gender, ability, nationality, culture, discipline, areas of interest. Without open participation and broad outreach, the digital humanities movement limits its capacity for critical engagement. (ibid)

This proclamation represents the critiques of the DH landscape in 2011, in which DH practitioners and participants were assumed to be privileged and white, that they excluded student-learners, and that they held myopic views of what constitutes DH. Most importantly for this chapter, THATCamp SoCal’s “Diversity in DH” section participants called for critical approaches and social justice of DH scholarship and participation, including “principles for feminist/non-exclusionary groundrules in each session (e.g., ‘step up/step back’) so that the loudest/most entitled people don’t fill all the quiet moments.” They also advocated defending the least-heard voices “so that the largest number of people can benefit…”

These voices certainly didn’t fall flat. However, since THATCamps are often comprised of geographically local DH microcommunities, they benefit from an inclusive environment but suffer as isolated events. As result, it seems that the larger, discipline-specific venues which have greater attendance and attraction continue to amplify privileged voices. Even so, 2011 continued to represent a year that called for critical engagement in diversity in DH, with an explicit “Big Tent” theme for DH2011 held in Stanford, California. Embracing the concept the “Big Tent” deliberately opened the doors and widened the spectrum of DH, at least in terms of methods and approaches. However, as Melissa Terras pointed out, DH was “still a very rich, very western academic field” (Terras, 2011), even with a few DH2011 presentations engaging specifically with topics of diversity in DH. 4

A focus on diversity-related issues has only grown in the interim. We’ve recently seen greater attention and criticism of DH exclusionary culture, for instance, at the 2015 Modern Language Association (MLA) annual convention, which included the roundtable discussion “Disrupting Digital Humanities.” It confronted the “gatekeeping impulse” in DH, and echoing THATCamp SoCal 2011, these panelists aimed to shut down hierarchical dialogues in DH, encourage non-traditional scholarship, amplify “marginalized voices,” advocate for DH novices, and generously support the work of peers. 5 The theme for DH2015 in Sydney, Australia was “Global Digital Humanities,” and between its successes and collective action arising from frustrations at its failures, the community seems poised to pay even greater attention to diversity. Other recent initiatives in this vein worth mention include #dhpoco, GO::DH, and Jacqueline Wernimont’s “Build a Better Panel,” 6 whose activist goals are helping diversify the community and raise awareness of areas where the community can improve.

While it would be fruitful to conduct a longitudinal historiographical analysis of diversity in DH, more recent criticisms illustrate a history of perceived exclusionary culture, which is why we hope to provide a data-driven approach to continue the conversation and call for feminist and critical engagement and intervention.

Data

While DH as a whole has been critiqued for its lack of diversity and inclusion, how does the annual ADHO DH conference measure up? To explore this in a data-driven fashion, we have gathered publicly available annual ADHO conference programs and schedules from 2000-2015. From those conference materials, we have entered presentation and author information into a spreadsheet to analyze various trends over time, such as gender and geography as indicators of diversity. Particular information that we have collected includes: presentation title, keywords (if available), abstract and full-text (if available), presentation type, author name, author institutional affiliation and academic department (if available), and corresponding country of that affiliation at the time of the presentation(s). We normalized and hand-cleaned names, institutions, and departments, so that, to the best of our knowledge, each author entry represented a unique person and, accordingly, was assigned a unique ID. Next, we added gender information (m/f/other/unknown) to authors by a combination of hand-entry and automated inference. While this is problematic for many reasons, 7 since it does not allow for diversity in gender options and tracing gender changes over time, it does give us a useful preliminary lense to view gender diversity at DH conferences.

For 2013’s conference, ADHO instituted a series of changes aimed at improving inclusivity, diversity, and quality. This drive was steered by that year’s program committee chair, Bethany Nowviskie, alongside 2014’s chair, Melissa Terras. Their reformative goals matched our current goals in this essay, and speak to a long history of experimentation and improvement efforts on behalf of ADHO. Their changes included making the conference more welcome to outsiders through ending policies that only insiders knew about; making the CFP less complex and easier to translate into multiple languages; taking reviewer language competencies into account systematically; and streamlining the submission and review process.

The biggest noticeable change to DH2013, however, was the institution of a reviewer bidding process and a phase of semi-open peer review. Peer reviewers were invited to read through and rank every submitted abstract according to how qualified they felt to review the abstract. Following this, the conference committee would match submissions to qualified peer reviewers, taking into account conflicts of interest. Submitting authors were invited to respond to reviews, and the committee would make a final decision based on the various reviews and rebuttals.This continues to be the process through DH2016. Changes continue to be made, most recently in 2016 with the addition of “Diversity” and “Multilinguality” as new keywords authors can append to their submissions.

While the list of submitted abstracts was private, accessible only to reviewers, as reviewers ourselves we had access to the submissions during the bidding phase. We used this access to create a dataset of conference submissions for DH2013, DH2014, and DH2015, which includes author names, affiliations, submission titles, author-selected topics, author-chosen keywords, and submission types (long paper, short paper, poster, panel).

We augmented this dataset by looking at the final conference programs in ‘13, ‘14, and ‘15, noting which submissions eventually made it onto the final conference program, and how they changed from the submission to the final product. This allows us to roughly estimate the acceptance rate of submissions, by comparing the submitted abstract lists to the final programs. It is not perfect, however, given that we don’t actually know whether submissions that didn’t make it to the final program were rejected, or if they were accepted and withdrawn. We also do not know who reviewed what, nor do we know the reviewers’ scores or any associated editorial decisions.

The original dataset, then, included fields for title, authors, author affiliations, original submission type, final accepted type, topics, keywords, and a boolean field for whether a submission made it to the final conference program. We cleaned the data up by merging duplicate people, ensuring e.g., if “Melissa Terras” was an author on two different submissions, she counted as the same person. For affiliations, we semi-automatically merged duplicate institutions, found the countries they reside in, and assigned those countries to broad UN regions. We also added data to the set, first automatically guessing a gender for each author, and then correcting the guesses by hand.

Given that abstracts were submitted to conferences with an expectation of privacy, we have not released the full submission dataset; we have, however, released the full dataset of final conference programs. 8

We would like to acknowledge the gross and problematic simplifications involved in this process of gendering authors without their consent or input. As Miriam Posner has pointed out, with regards to Getty’s Union List of Author Names, “no self-respecting humanities scholar would ever get away with such a crude representation of gender in traditional work”. And yet, we represent authors in just this crude fashion, labeling authors as male, female, or unknown/other. We did not encode changes of author gender over time, even though we know of at least a few authors in the dataset for whom this applies. We do not use the affordances of digital data to represent the fluidity of gender. This is problematic for a number of reasons, not least of which because, when we take a cookie cutter to the world, everything in the world will wind up looking like cookies.

We made this decision because, in the end, all data quality is contingent to the task at hand. It is possible to acknowledge an ontology’s shortcomings while still occasionally using that ontology to a positive effect. This is not always the case: often poor proxies get in the way a research agenda (e.g., citations as indicators of “impact” in digital humanities), rather than align with it. In the humanities, poor proxies are much more likely to get in the way of research than help it along, and afford the ability to make insensitive or reductivist decisions in the name of “scale”.

For example, in looking for ethnic diversity of a discipline, one might analyze last names as a proxy for country of origin, or analyze the color of recognized faces in pictures from recent conferences as a proxy for ethnic genealogy. Among other reasons, this approach falls short because ethnicity, race, and skin color are often not aligned, and last names (especially in the U.S.) are rarely indicative of anything at all. But they’re easy solutions, so people use them. These are moments when a bad proxy (and for human categories, proxies are almost universally bad) does not fruitfully contribute to a research agenda. As George E.P. Box put it, “all models are wrong, but some are useful.”

Some models are useful. Sometimes, the stars align and the easy solution is the best one for the question. If someone were researching immediate reactions of racial bias in the West, analyzing skin tone may get us something useful. In this case, the research focus is not someone’s racial identity, but someone’s race as immediately perceived by others, which would likely align with skin tone. Simply: if a person looks black, they’re more likely to be treated as such by the (white) world at large. 9

We believe our proxies, though grossly inaccurate, are useful for the questions of gender and geographic diversity and bias. The first step to improving DH conference diversity is noticing a problem; our data show that problem through staggeringly imbalanced regional and gender ratios. With regards to gender bias, showing whether reviewers are less likely to accept papers from authors who appear to be women can reveal entrenched biases, whether or not the author actually identifies as a woman. With that said, we invite future researchers to identify and expand on our admitted categorical errors, allowing everyone to see the contours of our community with even greater nuance.

Analysis

The annual ADHO conference has grown significantly in the last fifteen years, as described in our companion piece 10, within which can be found a great discussion of our methods. This piece, rather than covering overall conference trends, focuses specifically on issues of diversity and acceptance rates. We cover geographic and gender diversity from 2000-2015, with additional discussions of topicality and peer review bias beginning in 2013.

Gender

Women comprise 36.1% of the 3,239 authors to DH conference presentations over the last fifteen years, counting every unique author only once. Melissa Terras’ names appears on 29 presentations between 200-2015, and Scott B. Weingart’s name appears on 4 presentations, but for the purpose of this metric each name counts only once. Female authorship representation fluctuates between 29%-38% depending on the year.

Weighting every authorship event individually (i.e., Weingart’s name counts 4 times, Terras’ 29 times), women’s representation drops to 32.7%. This reveals that women are less likely to author multiple pieces compared to their male counterparts. More than a third of the DH authorship pool are women, but fewer than a third of every name that appears on a presentation is a woman’s. Even fewer single-authored pieces are by a woman; only 29.8% of the 984 single-authored works between 2000-2015 female-authored. About a third (33.4%) of first authors on presentations are women. See Fig. 1 for a breakdown of these numbers over time. Note the lack of periodicity, suggesting gender representation is not affected by whether the conference is held in Europe or North America (until 2015, the conference alternated locations every year). The overall ratio wavers, but is neither improving nor worsening over time.

Figure 1. re
Figure 1. Representation of Women at ADHO Conferences, 2000-2015.

The gender disparity sparked controversy at DH2015 in Sydney. It was, however, at odds with a common anecdotal awareness that many of the most respected role-models and leaders in the community are women. To explore this disconnect, we experimented with using centrality in co-authorship networks as a proxy for fame, respectability, and general presence within the DH consciousness. We assume that individuals who author many presentations, co-author with many people, and play a central role in connecting DH’s disparate communities of authorship are the ones who are most likely to garner the respect (or at least awareness) of conference attendees.

We created a network of authors connected to their co-authors from presentations between 2000-2015, with ties strengthening the more frequently two authors collaborate. Of the 3,239 authors in our dataset, 61% (1,750 individuals) are reachable by one another via their co-authorship ties. For example, Beth Plale is reachable by Alan Liu because she co-authored with J. Stephen Downie, who co-authored with Geoffrey Rockwell, who co-authored with Alan Liu. Thus, 61% of the network is connected in one large component, and there are 299 smaller components, islands of co-authorship disconnected from the larger community.

The average woman co-authors with 5 other authors, and the average man co-authors with 5.3 other authors. The median number of co-authors for both men and women is 4. The average and median of several centrality measurements (closeness, betweenness, pagerank, and eigenvector) for both men and women are nearly equivalent; that is, any given woman is just as likely to be near the co-authorship core as any given man. Naturally, this does not imply that half of the most central authors are women, since only a third of the entire authorship pool are women. It means instead that gender does not influence one’s network centrality. Or at least it should.

The statistics show a curious trend for the most central figures in the network. Of the top 10 authors who co-author with the most others, 60% are women. Of the top 20, 45% are women. Of the top 50, 38% are women. Of the top 100, 32% are women. That is, the over half the DH co-authorship stars are women, but the further towards the periphery you look, the more men occupy the middle-tier positions (i.e., not stars, but still fairly active co-authors). The same holds true for the various centrality measurements: betweenness (60% women in top 10; 40% in top 20; 32% in top 50; 34% in top 100), pagerank (50% women in top 10; 40% in top 20; 32% in top 50; 28% in top 100), and eigenvector (60% women in top 10; 40% in top 20; 40% in top 50; 34% in top 100).

In short, half or more of the DH conference stars are women, but as you creep closer to the network periphery, you are increasingly likely to notice the prevailing gender disparity. This supports the mismatch between an anecdotal sense that women play a huge role in DH, and the data showing they are poorly represented at conferences. The results also match with the fact that women are disproportionately more likely to write about management and leadership, discussed at greater length below.

The heavily-male gender skew at DH conferences may lead one to suspect a bias in the peer review process. Recent data, however, show that if such a bias exists, it is not direct. Over the past three conferences, 71% of women and 73% of men who submitted presentations passed the peer review process. The difference is not great enough to rule out random chance (p=0.16 using χÂČ). The skew at conferences is more a result of fewer women submitting articles than of women’s articles not getting accepted. The one caveat, explained more below, is that certain topics women are more likely to write about are also less likely to be accepted through peer-review.

This does not imply a lack of bias in the DH community. For example, although only 33.5% of authors at DH2015 in Sydney were women, 46% of conference attendees were women. If women were simply uninterested in DH, the split in attendance vs. authorship would not be so high.

In regard to discussions of women in different roles in the DH community – less the publishing powerhouses and more the community leaders and organizers – the concept of the “glass cliff” can be useful. Research on the feminization of academia in Sweden uses the term “glass cliff” as a “metaphor used to describe a phenomenon when women are appointed to precarious leadership roles associated with an increased risk of negative consequences when a company is performing poorly and for example is experiencing profit falls, declining stock performance, and job cuts” (Peterson 2014, 4). The female academics (who also occupied senior managerial positions) interviewed in Helen Peterson’s study expressed concerns about increasing workloads, the precarity of their positions, and the potential for interpersonal conflict.

Institutional politics may also play a role in the gendered data here. Sarah Winslow says of institutional context that “female faculty are less likely to be located at research institutions or institutions that value research over teaching, both of which are associated with greater preference for research” (779). The research, teaching, and service divide in academia remains a thorny issue, especially given the prevalence of what has been called the pink collar workforce in academia, or the disproportionate amount of women working in low-paying teaching-oriented areas. This divide likely also contributed to differing gender ratios between attendees and authors at DH2015.

While the gendered implications of time allocation in universities are beyond the scope of this paper, it might be useful to note that there might be long-term consequences for how people spend their time interacting with scholarly tasks that extend beyond one specific institution. Winslow writes: “Since women bear a disproportionate responsibility for labor that is institution-specific (e.g., institutional housekeeping, mentoring individual students), their investments are less likely to be portable across institutions. This stands in stark contrast to men, whose investments in research make them more highly desirable candidates should they choose to leave their own institutions” (790). How this plays out specifically in the DH community remains to be seen, but the interdisciplinarity of DH along with its projects that span multiple working groups and institutions may unsettle some of the traditional bias that women in academia face.

Locale

Until 2015, the DH conference alternated every year between North America and Europe. As expected, until recently, the institutions represented at the conference have hailed mostly from these areas, with the primary locus falling in North America. In fact, since 2000, North American authors were the largest authorial constituency at eleven of the fifteen conferences, even though North America only hosted the conference seven times in that period.

With that said, as opposed to gender representation, national and institutional diversity is improving over time. Using an Index of Qualitative Variation (IQV), institutional variation begins around 0.992 in 2000 and ends around 0.996 in 2015, with steady increases over time. National IQV begins around 0.79 in 2010 and ends around 0.83 in 2015, also with steady increases over time. The most recent conference was the first that included over 30% of authors and attendees arriving from outside Europe or North America. Now that ADHO has implemented a three-year cycle, with every third year marked by a movement outside its usual territory, that diversity is likely to increase further still.

The most well-represented institutions are not as dominating as some may expect, given the common view of DH as a community centered around particular powerhouse departments or universities. The university with the most authors contributing to DH conferences (2.4% of the total authors) is King’s College London, followed by the Universities of Illinois (1.85%), Alberta (1.83%), and Virginia (1.75%). The most prominent university outside of North America or Europe is Ritsumeikan University, contributing 1.07% of all DH conference authors. In all, over a thousand institutions have contributed authors to the conference, and that number increases every year.

While these numbers represent institutional origins, the data available does not allow any further diving into birth countries, native language, ethnic identities, etc. The 2013-2015 dataset, including peer review information, does yield some insight into geography-influenced biases that may map to language or identity. While the peer review data do not show any clear bias by institutional country, there is a very clear bias against names which do not appear frequently in the U.S. Census or Social Security Index. We discovered this when attempting to statistically infer the gender of authors using these U.S.-based indices. 11 From 2013-2015, presentations written by those with names appearing frequently in these indices were significantly more likely to be accepted than those written by authors with non-English names (p < 0.0001). Whereas approximately 72% of authors with common U.S. names passed peer review, only 61% of authors with uncommon names passed. Without more data, we have no idea whether this tremendous disparity is due to a bias against popular topics from non-English-speaking countries, a higher likelihood of peer reviewers rejecting text written by non-native writers, an implicit bias by peer reviewers when they see “foreign” names, or something else entirely.

Topic

When submitting a presentation, authors are given the opportunity to provide keywords for their submission. Some keywords can be chosen freely, while others must be chosen from a controlled list of about 100 potential topics. These controlled keywords are used to help in the process of conference organization and peer reviewer selection, and they stay roughly constant every year. New keywords are occasionally added to the list, as in 2016, where authors can now select three topics which were not previously available: “Digital Humanities – Diversity”, “Digital Humanities – Multilinguality”, and “3D Printing”. The 2000-2015 conference dataset does not include keywords for every article, so this analysis will only cover the more detailed dataset, 2013-2015, with additional data on submissions for DH2016.

From 2013-2016, presentations were tagged with an average of six controlled keywords per submission. The most-used keywords are unsurprising: “Text Analysis” (tagged on 22% of submissions), “Data Mining / Text Mining” (20%), “Literary Studies” (20%), “Archives, Repositories, Sustainability And Preservation” (19%), and “Historical Studies” (18%). The most frequently-used keyword potentially pertaining directly to issues of diversity, “Cultural Studies”, appears on on 14% of submissions from 2013-2016. Only 2% of submissions are tagged with “Gender Studies”. The two diversity-related keywords introduced this year are already being used surprisingly frequently, with 9% of submissions in 2016 tagged “Digital Humanities – Diversity” and 6% of submissions tagged “Digital Humanities – Multilinguality”. With over 650 conference submissions for 2016, this translates to a reasonably large community of DH authors presenting on topics related to diversity.

Joining the topic and gender data for 2013-2015 reveals the extent to which certain subject matters are gendered at DH conferences. 12 Women are twice as likely to use the “Gender Studies” tag as male authors, whereas men are twice as likely to use the “Asian Studies” tag as female authors. Subjects related to pedagogy, creative / performing arts, art history, cultural studies, GLAM (galleries, libraries, archives, museums), DH institutional support, and project design/organization/management are more likely to be presented by women. Men, on the other hand, are more likely to write about standards & interoperability, the history of DH, programming, scholarly editing, stylistics, linguistics, network analysis, and natural language processing / text analysis. It seems DH topics have inherited the usual gender skews associated with the disciplines in which those topics originate.

We showed earlier that there was no direct gender bias in the peer review process. While true, there appears to be indirect bias with respect to how certain gendered topics are considered acceptable by the DH conference peer reviewers. A woman has just as much chance of getting a paper through peer review as a man if they both submit a presentation on the same topic (e.g., both women and men have a 72% chance of passing peer review if they write about network analysis, or a 65% chance of passing peer review if they write about knowledge representation), but topics that are heavily gendered towards women are less likely to get accepted. Cultural studies has a 57% acceptance rate, gender studies 60%, pedagogy 51%. Male-skewed topics have higher acceptance rates, like text analysis (83%), programming (80%), or Asian studies (79%). The female-gendering of DH institutional support and project organization also supports our earlier claim that, while women are well-represented among the DH leadership, they are more poorly represented in those topics that the majority of authors are discussing (programming, text analysis, etc.).

Regarding the clustering – and devaluing – of topics that women tend to present on at DH conferences, the widespread acknowledgement of the devaluing of women’s labor may help to explain this. We discussed the feminization of academia above, and indeed, this is a trend seen in practically all facets of society. The addition of emotional labor or caretaking tasks complicates this. Economist Teresa Ghilarducchi explains: “a lot of what women do in their lives is punctuated by time outside of the labor market — taking care of family, taking care of children — and women’s labor has always been devalued
[people] assume that she had some time out of the labor market and that she was doing something that was basically worthless, because she wasn’t being paid for it.” In academia specifically, the labyrinthine relationship of pay to tasks/labor further obscures value: we are rarely paid per task (per paper published or presented) on the research front; service work is almost entirely invisible; and teaching factors in with course loads, often with more up-front transparency for contingent laborers such as adjuncts and part-timers.

Our results seem to point to less of an obvious bias against women scholars than a subtler bias against topics that women tend to gravitate toward, or are seen as gravitating toward. This is in line with the concept of postfeminism, or the notion that feminism has met its main goals (e.g. getting women the right to vote and the right to an education), and thus is irrelevant to contemporary social needs and discourse. Thoroughly enmeshed in neoliberal discourse, postfeminism makes discussing misogyny seem obsolete and obscures the subtler ways in which sexism operates in daily life (Pomerantz, Raby, and Stefanik 2013). While individuals may or may not choose to identify as postfeminist, the overarching beliefs associated with postfeminism have permeated North American culture at a number of levels, leading us to posit the acceptance of the ideals of postfeminism as one explanation for the devaluing of topics that seem associated with women.

Discussion and Future Research

The analysis reveals an annual DH conference with a growing awareness of diversity-related issues, with moderate improvements in regional diversity, stagnation in gender diversity, and unknown (but anecdotally poor) diversity with regards to language, ethnicity, and skin color. Knowledge at the DH conference is heavily gendered, though women are not directly biased against during peer review, and while several prominent women occupy the community’s core, women occupy less space in the much larger periphery. No single or small set of institutions dominate the conference attendance, and though North America’s influence on ADHO cannot be understated, recent ADHO efforts are significantly improving the geographic spread of its constituency.

The DH conference, and by extension ADHO, is not the digital humanities. It is, however, the largest annual gathering of self-identified digital humanists, 13 and as such its makeup holds influence over the community at large. Its priorities, successes, and failures reflect on DH, both within the community and to the outside world, and those priorities get reinforced in future generations. If the DH conference remains as it is—devaluing knowledge associated with femininity, comprising only 36% women, and rejecting presentations by authors with non-English names—it will have significant difficulty attracting a more diverse crowd without explicit interventions. Given the shortcomings revealed in the data above, we present some possible interventions that can be made by ADHO or its members to foster a more diverse community, inspired by #WhatIfDH2016:

  • As pointed out by Yvonne Perkins, Ask presenters to include a brief “Collections Used” section, when appropriate. Such a practice would highlight and credit the important work being done by those who aren’t necessarily engaging in publishable research, and help legitimize that work to conference attendees.

  • As pointed out by Vika Zafrin, create guidelines for reviewers explicitly addressing diversity, and provide guidance on noticing and reducing peer review bias.

  • As pointed out by Vika Zafrin, community members can make an effort to solicit presentation submissions from women and people of color.

  • As pointed out by Vika Zafrin, collect and analyze data on who is peer reviewing, to see whether or the extent to which biases creep in at that stage.

  • As pointed out by AimĂ©e Morrison, ensure that the conference stage is at least as diverse as the conference audience. This can be accomplished in a number of ways, from conference organizers making sure their keynote speakers draw from a broad pool, to organizing last-minute lightning lectures specifically for those who are registered but not presenting.

  • As pointed out by Tonya Howe, encourage presentations or attendance from more process-oriented liberal arts delegates.

  • As pointed out by Christina Boyles, encourage the submission of research focused around the intersection of race, gender, and sexuality studies. This may be partially accomplished by including more topical categories for conference submissions, a step which ADHO has already taken for 2016.

  • As pointed out by many, take explicit steps in ensuring conference access to those with disabilities. We suggest this become an explicit part of the application package submitted by potential host institutions.

  • As pointed out by many, ensure the ease of participation-at-a-distance (both as audience and as speaker) for those without the resources to travel.

  • As requested by Karina van Dalen-Oskam, chair of ADHO’s Steering Committee, send her an email on how to navigate the difficult cultural issues facing an international organization.

  • Give marginalized communities greater representation in the DH Conference peer reviewer pool. This can be done grassroots, with each of us reaching out to colleagues to volunteer as reviewers, and organizationally, perhaps by ADHO creating a volunteer group to seek out and encourage more diverse reviewers.

  • Consider the difference between diversifying (verb) vs. talking about diversity (noun), and consider whether other modes of disrupting hegemony, such as decolonization and queering, might be useful in these processes.

  • Contribute to the #whatifDH2016 and #whatifDH2017 discussions on twitter with other ideas for improvements.

Many options are available to improve representation at DH conferences, and some encouraging steps are already being taken by ADHO and its members. We hope to hear more concrete steps that may be taken, especially learned from experiences in other communities or outside of academia, in order to foster a healthier and more welcoming conference going forward.

In the interest of furthering these goals and improving the organizational memory of ADHO, the public portion of the data (final conference programs with full text and unique author IDs) is available alongside this publication [will link in final draft]. With this, others may test, correct, or improve our work. We will continue work by extending the dataset back to 1990, continuing to collect for future conferences, and creating an infrastructure that will allow the database to connect to others with similar collections. This will include the ability to encode more nuanced and fluid gender representations, and for authors to correct their own entries. Further work will also include exploring topical co-occurrence, institutional bias in peer review, how institutions affect centrality in the co-authorship network, and how authors who move between institutions affect all these dynamics.

The Digital Humanities will never be perfect. It embodies the worst of its criticisms and the best of its ideals, sometimes simultaneously. We believe a more diverse community will help tip those scales in the right direction, and present this chapter in service of that belief.

Works Cited

#whatifdh2015 “TAGS Searchable Twitter Archive,” n.d. http://hawksey.info/tagsexplorer/arc.html?key=10C2c1phG1QywDmy4lG4mro6VBiv0UuZlLL_uZ8HFfkc&gid=400689247

ADHO. “Our Mission,” n.d. http://adho.org/

“ADHO Announces New Steering Committee Chair.” ADHO, n.d. http://www.adho.org/announcements/2015/adho-announces-new-steering-committee-chair

“All Models Are Wrong.” Wikipedia, September 20, 2015. https://en.wikipedia.org/w/index.php?title=All_models_are_wrong&oldid=681908687

Blevins, Cameron, and Lincoln Mullen. “Jane, John 
 Leslie? A Historical Method for Algorithmic Gender Prediction.” Digital Humanities Quarterly 9, no. 3 (2015). http://www.digitalhumanities.org/dhq/vol/9/3/000223/000223.html

Boyles, Christina. “#WhatIfDH2016 Made Space for Scholars Who Are Interested in the Intersection(s) between DH and Race, Gender, and Sexuality Studies?” @clboyles, July 1, 2015. https://twitter.com/clboyles/statuses/616080151365861376

Burton, John W. Culture and the Human Body: An Anthropological Perspective. Prospect Heights, Ill.: Waveland Press, 2001.

“centerNet,” n.d. http://www.dhcenternet.org/

Cohen, Dan. “Catching the Good.” Dan Cohen, March 30, 2012. http://www.dancohen.org/2012/03/30/catching-the-good/

“Conditionally Accepted.” Inside Higher Education, n.d. https://www.insidehighered.com/users/conditionally-accepted

“Conference.” ADHO, n.d. http://adho.org/conference

“Congrats, You Have an All Male Panel!” n.d. http://allmalepanels.tumblr.com/

“DH Dark Sider (@DHDarkSider) | Twitter,” n.d. https://twitter.com/dhdarksider

“DH Enthusiast (@DH_Enthusiast) | Twitter,” n.d. https://twitter.com/DH_Enthusiast

“Disrupting the Digital Humanities.” Disrupting the Digital Humanities, n.d. http://www.disruptingdh.com/

Diversity in DH @ THATCamp. “Toward an Open Digital Humanities,” January 11, 2011. https://docs.google.com/document/d/1uPtB0xr793V27vHBmBZr87LY6Pe1BLxN-_DuJzqG-wU/edit?usp=sharing

Drucker, Johanna. “Humanistic Theory and Digital Scholarship.” In Debates in the Digital Humanities. University of Minnesota Press, 2012. http://dhdebates.gc.cuny.edu/debates/text/34

“Fight The Tower : Women of Color in Academia,” n.d. http://fighttower.com/

Ghilarducci, Teresa. “Why Women Over 50 Can’t Find Jobs.” Portside, n.d. http://portside.org/2016-01-18/why-women-over-50-can’t-find-jobs

“Global Outlook::Digital Humanities | Promoting Collaboration among Digital Humanities Researchers World-Wide,” n.d. http://www.globaloutlookdh.org/

Golumbia, David. “Right Reaction and the Digital Humanities.” Uncomputing, July 3, 2015. http://www.uncomputing.org/?p=1666

Howe, Tonya. “#whatifDH2016 Advocated for More Process-Oriented Liberal Arts Delegates?” Microblog. Twitter.com/howet, June 30, 2015. https://twitter.com/howet/statuses/616045260570030080

Hunt, Lynn. “Has the Battle Been Won? The Feminization of History.” Perspectives on History, May 1998. https://www.historians.org/publications-and-directories/perspectives-on-history/may-1998/has-the-battle-been-won-the-feminization-of-history

Lothian, Alexis. “THATCamp and Diversity in Digital Humanities.” Queer Geek Theory, n.d. http://www.queergeektheory.org/2011/01/thatcamp-and-diversity-in-digital-humanities/

Milen, Jeffrey F., Mitchell J. Chang, and Anthony Lising Antonio. “Making Diversity Work on Campus: A Research-Based Perspective.” Association American Colleges and Universities, 2005. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.2597&rep=rep1&type=pdf

Morrison, AimĂ©e. “#WhatIfDH2016 Had as Many Women on the Stage as in the Audience? http://www.scottbot.net/HIAL/?p=41355 #dh2015.” Microblog. @digiwonk, June 30, 2015. https://twitter.com/digiwonk/status/616042963093835776

Mullen, Lincoln. Ropensci/gender: Predict Gender from Names Using Historical Data, n.d. https://github.com/ropensci/gender

Nowviskie, Bethany. “Asking for It.” Bethany Nowviskie, February 8, 2014. http://nowviskie.org/2014/asking-for-it/

———. “Cats and Ships.” Bethany Nowviskie, November 2, 2012. http://nowviskie.org/2012/cats-and-ships/

Ohio State University. “Diversity Action Plan,” n.d. https://www.osu.edu/diversityplan/index.php

Perkins, Yvonne. “International Researchers Value Work of Australian Libraries and Archives.” Stumbling Through the Past, July 20, 2015. https://stumblingpast.wordpress.com/2015/07/21/intnl_researchers_value_oz_libraries_archives/

Peterson, Helen. “An Academic ‘Glass Cliff’? Exploring the Increase of Women in Swedish Higher Education Management.” Athens Journal of Education 1, no. 1 (February 2014): 32–44.

Pomerantz, Shauna, Rebecca Raby, and Andrea Stefanik. “Girls Run the World? Caught between Sexism and Postfeminism in the School.” *Gender & Society *27, no. 2 (April 1, 2013): 185-207. doi:10.1177/0891243212473199

Posner, Miriam. “What’s Next: The Radical, Unrealized Potential of Digital Humanities.” Miriam Posner’s Blog, July 27, 2015. http://miriamposner.com/blog/whats-next-the-radical-unrealized-potential-of-digital-humanities/

“Postcolonial Digital Humanities | Global Explorations of Race, Class, Gender, Sexuality and Disability within Cultures of Technology,” n.d. http://dhpoco.org/

Steiger, Kay. “The Pink Collar Workforce of Academia: Low-Paid Adjunct Faculty, Who Are Mostly Female, Have Started Unionizing for Better Pay—and Winning.” The Nation, July 11, 2013. http://www.thenation.com/article/academias-pink-collar-workforce/

Terras, Melissa. “Disciplined: Using Educational Studies to Analyse ‘Humanities Computing.’” Literary and Linguistic Computing 21, no. 2 (June 1, 2006): 229–46. doi:10.1093/llc/fql022

———. “Peering Inside the Big Tent: Digital Humanities and the Crisis of Inclusion.” Melissa Terras’ Blog, July 26, 2011. http://melissaterras.blogspot.com/2011/07/peering-inside-big-tent-digital.html

“THATCamp Southern California 2011 | The Humanities and Technology Camp,” n.d. http://socal2011.thatcamp.org/

“University of Venus.” Inside Higher Education, n.d. https://www.insidehighered.com/blogs/university-venus

U.S. Department of Education, National Center for Education Statistics. “Race/ethnicity of College Faculty,” 2015. https://nces.ed.gov/fastfacts/display.asp?id=61

Weingart, Scott. “Acceptances to Digital Humanities 2015 (part 4).” The Scottbot Irregular, June 28, 2015. http://www.scottbot.net/HIAL/?p=41375

———. “The Myth of Text Analytics and Unobtrusive Measurement.” The Scottbot Irregular, May 6, 2012. http://www.scottbot.net/HIAL/?p=16713

Wernimont, Jacqueline. “Build a Better Panel: Women in DH.” Jacqueline Wernimont. Accessed January 14, 2016. https://jwernimont.wordpress.com/2015/09/19/build-a-better-panel-women-in-dh/

———. “No More Excuses.” Jacqueline Wernimont, September 19, 2015. https://jwernimont.wordpress.com/2015/09/19/no-more-excuses/

Winslow, Sarah. “Gender Inequality and Time Allocations Among Academic Faculty.” Gender & Society 24, no. 6 (December 1, 2010): 769–93. doi:10.1177/0891243210386728.

Zafrin, Vika. “#WhatIfDH2016 Created Guidelines for Reviewers Explicitly Addressing Diversity & Providing Guidance on Reducing One’s Bias?” Microblog. @veek, June 30, 2015. https://twitter.com/veek/status/616041712163680256

———. “#WhatIfDH2016 Encouraged ALL Community Members to Reach out to Women & POC and Solicit Paper Submissions?” Microblog. @veek, June 30, 2015. https://twitter.com/veek/statuses/616041931949363200

———. “#WhatIfDH2016 Expanded ConfTool Pro to Record Reviewer Biases along Gender, Race, Country-of-Origin GDP Lines?” Microblog. @veek, June 30, 2015. https://twitter.com/veek/statuses/616043562799636481

Notes:

  1. Each author contributed equally to the final piece; please disregard authorship order.
  2. See Melissa Terras, “Disciplined: Using Educational Studies to Analyse ‘Humanities Computing.’” Literary and Linguistic Computing 21, no. 2 (June 1, 2006): 229–46. doi:10.1093/llc/fql022. Terras takes a similar approach, analyzing Humanities Computing “through its community, research, curriculum, teaching programmes, and the message they deliver, either consciously or unconsciously, about the scope of the discipline.”
  3. The authors have created a browsable archive of #whatifDH2016 tweets.
  4. Of the 146 presentations at DH2011, two standout in relation to diversity in DH: “Is There Anybody out There? Discovering New DH Practitioners in other Countries” and “A Trip Around the World: Balancing Geographical Diversity in Academic Research Teams.”
  5. See “Disrupting DH,” http://www.disruptingdh.com/
  6. See Wernimont’s blog post, “No More Excuses” (September 2015) for more, as well as the Tumblr blog, “Congrats, you have an all male panel!”
  7. Miriam Posner offers a longer and more eloquent discussion of this in, “What’s Next: The Radical, Unrealized Potential of Digital Humanities.” Miriam Posner’s Blog. July 27, 2015. http://miriamposner.com/blog/whats-next-the-radical-unrealized-potential-of-digital-humanities/
  8. [Link to the full public dataset, forthcoming and will be made available by time of publication])
  9. We would like to acknowledge that race and ethnicity are frequently used interchangeably, though both are cultural constructs with their roots in Darwinian thought, colonialism, and imperialism. We retain these terms because they express cultural realities and lived experiences of oppression and bias, not because there is any scientific validity to their existence. For more on this tension, see John W.Burton, (2001), Culture and the Human Body: An Anthropological Perspective. Prospect Heights, Illinois: Waveland Press, 51-54.
  10. Weingart, S.B. & Eichmann, N. (2016). “What’s Under the Big Tent?: A Study of ADHO Conference Abstracts.” Manuscript submitted for publication.
  11. We used the process and script described in: Lincoln Mullen (2015). gender: Predict Gender from Names Using Historical Data. R package version 0.5.0.9000 (https://github.com/ropensci/gender) and Cameron Blevins and Lincoln Mullen, “Jane, John … Leslie? A Historical Method for Algorithmic Gender Prediction,” Digital Humanities Quarterly 9.3 (2015).
  12. For a breakdown of specific numbers of gender representation across all 96 topics from 2013-2015, see Weingart’s “Acceptances to Digital Humanities 2015 (part 4)”.
  13. While ADHO’s annual conference is usually the largest annual gathering of digital humanists, that place is constantly being vied for by the Digital Humanities Summer Institute in Victoria, Canada, which in 2013 boasted more attendees than DH2013 in Lincoln, Nebraska.

Acceptances to DH2016 (pt. 1)

[note: originally published as draft on March 17th, 2016]

DH2016 announced their final(ish) program yesterday and, of course, that means it’s analysis time. Every year, I steal scrape submission data from the reviewer interface, and then scrape the final conference program, to report acceptance rates and basic stats for the annual event. See my previous 7.2 million previous posts on the subject. Nobody gives me data, I take it (capta, amiright?), so take these results with as many grains of salt as you’ll find at the DH2016 salt mines.

As expected, this will be the biggest ADHO conference to date, continuing a mostly-consistent trend of yearly growth. Excluding workshops & keynotes, this year’s ADHO conference in KrakĂłw, Poland will feature 417 posters & presentations, up from 259 in 2015 (an outlier, held in Australia) and the previous record of 345 in 2014 (Switzerland). At this rate, the number of DH presentations should surpass our human population by the year 2126 (or earlier in the case of unexpected zombies).

# of conference presentations since 2000
Number of conference presentations since 2000.

Acceptance rates this year are on par with previous years. An email from ADHO claims this year’s overall acceptance rate to be 62%, and my calculations put it at 64%. Previous years were within this range: 2013 Nebraska (64%), 2014 Switzerland (59%), and 2015 Australia (72%). Regarding form, the most difficult type of presentation to get through review is a long paper, with only 44% of submitted long papers being accepted as long papers. Another 7.5% of long papers were accepted as posters, and 10% as short papers. In total, 62% of long paper submissions were accepted in some form. Reviewers accepted 75% of panels and posters, leaving them mostly in their original form. The category least likely to get accepted in any form was the short paper, with an overall 59% acceptance rate (50% accepted as short papers; 8% accepted as posters). The moral of the story is that your best bet to get accepted to DH is to submit a poster. If you hate posters, submit a long paper; even if it’s not accepted as a long paper, it might still get in as a short or a poster. But if you do hate posters, maybe just avoid this conference.

Acceptances by type. (Left: Submission type. Right: Acceptance type or rejection).
Proportion of acceptances by type, 2016. Submission type on left, acceptance type or rejection on right.

About a third of this year’s presentations are single-authored, another third dual-authored, and the last third are authored by three or more people. As with 2013-2015, more authors means a more likely acceptance: reviewers accepted 51% of single-authored presentations, 66% of dual-authored presentations, and 74% of three-or-more-authored presentations.

Acceptance rate by number of authors.
Acceptance rate by number of authors.

Topically, the landscape of DH2016 will surprise few. A quarter of all presentations will involve text analysis, followed by historical studies (23% of all presentations), archives (21%), visualizations (20%), text/data mining (20%), and literary studies (20%). DH self-reflection is always popular, with this year’s hot-button issues being DH diversity (10%), DH pedagogy (10%), and DH facilities (7%). Surprisingly, other categories pertaining to pedagogy are also growing compared to previous years, though mostly it’s due to more submissions in that area. Reviewers still don’t rate pedagogy presentations very highly, but more on that in the next post. Some topical low spots compared to previous years include social media (2% of all presentations), anthropology (3%), VR/AR (3%), crowdsourcing (4%), and philosophy (5%).

This year will likely be the most linguistically diverse conference thus-far: 92% English, 7% French, 0.5% German, with other presentations in Spanish, Italian, Polish, etc. (And by “most linguistically diverse” obviously I mean “really not very diverse but have you seen the previous conferences?”) Submitting in a non-English language doesn’t appreciably affect acceptance rates.

That’s all for now. Stay-tuned for Pt. 2, with more thorough comparisons to previous years, actual granular data/viz on topics, analyses of gender and geography, as well as interpretations of what the changing landscape means for DH.

Submissions to DH2016 (pt. 1)

tl;dr Basic numbers on DH2016 submissions.


Twice a year I indulge my meta-disciplinary sweet tooth: once to look at who’s submitting what to ADHO’s annual digital humanities conference, and once to look at which pieces get accepted (see the rest of the series). This post presents my first look at DH2016 conference submissions, the data for which I scraped from ConfTool during the open peer review bidding phase. Open peer review bidding began in 2013, so I have 4 years of data. I opt not to publish this data, as most authors submit pieces under an expectation of privacy, and might violently throw things at my face if people find out which submissions weren’t accepted. Also ethics.

Submission Numbers & Types

The basic numbers: 652 submissions (268 long papers, 223 short papers, 33 panels / multiple paper sessions, 128 posters). For those playing along at home, that’s:

  • 2013 Nebraska: 348 (144/118/20/66)
  • 2014 Lausanne: 589 (250/198/30/111)
  • 2015 Sydney: 360 (192/102/13/53)
  • 2016 KrakĂłw: 652 (268/223/33/128)
Comparisons of submission types to DH2013-DH2016
Comparisons of submission types to DH2013-DH2016

DH2016 submissions are on par to continue the consistent-ish trend of growth every year since 1999, the large dip in 2015 unsurprising given its very different author pool, and the fact that it was the first time the conference visited the southern hemisphere or Asia-Pacific. The different author pool in 2015 also likely explains why it was the only conference to deviate from the normal submission-type ratios.

Co-Authorship

Regarding co-authorship, the number has shifted this year, though not enough to pass any significance tests.

Co-authorships in DH2013-DH2016 submissions.
Co-authorship in DH2013-DH2016 submissions.

DH2016 has proportionally slightly fewer single authored papers than previous years, and slightly more 2-, 3-, and 4-authored papers. One submission has 17 authors (not quite the 5,154-author record of high energy physics, but we’re getting there, eh?), but mostly it’s par for the course here.

Topics

Topically, DH2016 submissions continue many trends seen previously.

Authors must tag their submissions into multiple categories, or topics, using a controlled vocabulary. The figure presents a list of topics tagged to submissions, ordered top-to-bottom by the largest proportion of submissions with a certain tag for 2016. Nearly 25% of DH2016 submissions, for example, were tagged with “Text Analysis”. The dashed lines represent previous years’ tag proportions, with the darkest representing 2015, getting lighter towards 2013. New topics, those which just entered the controlled vocabulary this year, are listed in red. They are 3D Printing, DH Multilinguality, and DH Diversity.

Scroll past the long figure below to read my analysis:

dh2016-topics

In a reveal that will shock all species in the known universe, text analysis dominates DH2016 submissions—the proportion even grew from previous years. Text & data mining, archives, and data visualization aren’t far behind, each growing from previous years.

What did actually (pleasantly) surprise me was that, for the first time since I began counting in 2013, history submissions outnumber literary ones. Compare this to 2013, when literary studies were twice as well represented as historical. Other top-level categories experiencing growth include: corpus studies, content analysis, knowledge representation, NLP, and linguistics.

Two areas which I’ve pointed out previously as needing better representation, geography and pedagogy, both grew compared to previous years. I’ve also pointed out a lack of discussion of diversity, but part of that lack was that authors had no “diversity” category to label their research with—that is, the issue I pointed out may have been as much a problem with the topic taxonomy as with the research itself. ADHO added “Diversity” and “Multilinguality” as potential topic labels this year, which were tagged to 9.4% and 6.5% of submissions, respectively. One-in-ten submissions dealing specifically with issues of diversity is encouraging to see.

Unsurprisingly, since Sydney, submissions tagged “Asian Studies” have dropped. Other consistent drops over the last few years include software design, A/V & multimedia (sadface), information retrieval, XML & text encoding,  internet & social media-related topics, crowdsourcing, and anthropology. The conference is also getting less self-referential, with a consistent drop in DH histories and meta-analyses (like this one!). Mysteriously, submissions tagged with the category “Other” have dropped rapidly each year, suggesting… dunno, aliens?

I have the suspicion that some numbers are artificially growing because there are more topics tagged per article this year than previous years, which I’ll check and report on in the next post.

It may be while before I upload the next section due to other commitments. In the meantime, you can fill your copious free-time reading earlier posts on this subject or my recent book with Shawn Graham & Ian Milligan, The Historian’s Macroscope. Maybe you can buy it for your toddler this holiday season. It fits perfectly in any stocking (assuming your stockings are infinitely deep, like Mary Poppins’ purse, which as a Jew watching Christmas from afar I just always assume is the case).

Work with me! CMU is hiring a DH Developer

Carnegie Mellon University is hiring a DH Developer!

I’ve had a blast since starting as Digital Humanities Specialist at CMU. Enough administrators, faculty, and students are on board to make building a DH strength here pretty easy, and we’re neighbors to Pitt DHRX, a really supportive supercomputing center, and great allies in the Mayor’s Office keen on a city rich with art, data, and both combined.

We want a developer to help jump-start our research efforts. You’ll be working as a full collaborator on projects from all sorts of domains, and as a review board member you’ll have a strong say in which projects they are and how they get implemented. You and I will work together in achievable rapid prototyping, analyzing data, and web deployment.

The idea is we build or do stuff that’s scholarly, interesting, and can have a proof-of-concept or article done in a semester or two. With that, the project can go on to seek additional funding and a full-time specialized programmer, or we can finish there and all be proud authors or creators of something we enjoyed making.

Ideally, you have a social science, humanities, journalism, or similar research background, and the broad tech chops to create a d3 viz, DeepDream some dogs into a work of art, manage a NoSQL database, and whatever else seems handy. Ruby on Rails, probably.

We’re looking for someone who loves playing with new tech stacks, isn’t afraid to get their hands dirty, and knows how to talk to humans. You probably have a static site and a github account. You get excited by interactive data stories, and want to make them with us. This job values breadth over depth and done over perfect.

The job isn’t as insane as it sounds—you don’t actually need to be able to do all this already, just be the sort of person who can learn on the fly. A bachelor’s degree or similar experience is required, with a strong preference for candidates with some research background. You’ll need to submit or point to some examples of work you’ve done.

We’re an equal opportunity employer, and would love to see applications from women, minorities, or other groups who often have a tough time getting developer jobs. If you work here you can take two free classes a semester. Say, who wants a fancy CMU computer science graduate degree? We can offer an awesome city, friendly coworkers, and a competitive salary (also Pittsburgh’s cheap so you wouldn’t live in a closet, like in SF or NYC).

What I’m saying is you should apply ’cause we love you.


The ad, if you’re too lazy to click the link, or are scared CMU hosts viruses:

Job Description
Digital Humanities Developer, Dietrich College of Humanities and Social Sciences

Summary
The Dietrich College of Humanities and Social Sciences at Carnegie Mellon University (CMU) is undertaking a long-term initiative to foster digital humanities research among its faculty, staff, and students. As part of this initiative, CMU seeks an experienced Developer to collaborate on cutting edge interdisciplinary projects.

CMU is a world leader in technology-oriented research, and a highly supportive environment for cross-departmental teams. The Developer would work alongside researchers from Dietrich and elsewhere to plan and implement digital humanities projects, from statistical analyses of millions of legal documents to websites that crowdsource grammars of endangered languages. Located in the the Office of The Dean under CMU’s Digital Humanities Specialist, the developer will help start up faculty projects into functioning prototypes where they can acquire sustaining funding to hire specialists for more focused development.

The position emphasizes rapid, iterative deployment and the ability to learn new techniques on the job, with a focus on technologies intersecting data science and web development, such as D3.js, NoSQL, Shiny (R), IPython Notebooks, APIs, and Ruby on Rails. Experience with digital humanities or computational social sciences is also beneficial, including work with machine learning, GIS, or computational linguistics.

The individual in this position will work with clients and the digital humanities specialist to determine achievable short-term prototypes in web development or data analysis/presentation, and will be responsible for implementing the technical aspects of these goals in a timely fashion. As a collaborator, the Digital Humanities Developer will play a role in project decision-making, where appropriate, and will be credited on final products to which they extensively contribute.

Please submit a cover letter, phone numbers and email addresses for two references, a résumé or cv, and a page describing how your previous work fits the job, including links to your github account or other relevant previous work examples.

Qualifications

  • Bachelor’s Degree in humanities computing, digital humanities, informatics, computer science, related field, or equivalent combination of training and experience.
  • At least one year of experience in modern web development and/or data science, preferably in a research and development team setting.
  • Demonstrated knowledge of modern machine learning and web development languages and environments, such as some combination of Ruby on Rails, LAMP, Relational Databases or NoSQL (MongoDB, Cassanda, etc.), MV* & JavaScript (including D3.js), PHP, HTML5, Python/R, as well as familiarity with open source project development.
  • Some system administration.

Preferred Qualifications

  • Advanced degree in digital humanities, computational social science, informatics, or data science. Coursework in data visualization, machine learning, statistics, or MVC web applications.
  • Three or more years at the intersection of web development/deployment and machine learning (e.g. data journalism or digital humanities) in an agile software environment.
  • Ability to assess client needs and offer creative research or publication solutions.
  • Any combination of GIS, NLTK, statistical models, ABMs, web scraping, mahout/hadoop, network analysis, data visualization, RESTful services, testing frameworks, XML, HPC.

Job Function: Research Programming

Primary Location: United States-Pennsylvania-Pittsburgh

Time Type: Full Time

Organization: DIETRICH DEAN’S OFFICE

Minimum Education Level: Bachelor’s Degree or equivalent

Salary: Negotiable

Ghosts in the Machine

Musings on materiality and cost after a tour of The Shoah Foundation.

Forgetting The Holocaust

As the only historian in my immediate family, I’m responsible for our genealogy, saved in a massive GEDCOM file. Through the wonders of the web, I now manage quite the sprawling tree: over 100,000 people, hundreds of photos, thousands of census records & historical documents. The majority came from distant relations managing their own trees, with whom I share.

Such a massive well-kept dataset is catnip for a digital humanist. I can analyze my family! The obvious first step is basic stats, like the most common last name (Aber), average number of kids (2), average age at death (56), or most-frequently named location (New York). As an American Jew, I wasn’t shocked to see New York as the most-common place name in the list. But I was unprepared for the second-most-common named location: Auschwitz.

I’m lucky enough to write this because my great grandparents all left Europe before 1915. My grandparents don’t have tattoos on their arms or horror stories about concentration camps, though I’ve met survivors their age. I never felt so connected to The Holocaust, HaShoah, until I took time to see explore the hundreds of branches of my family tree that simply stopped growing in the 1940s.

Aerial photo of Auschwitz-Birkenau. [via wikipedia]
1 of every 16 Jews in the entire world were murdered in Auschwitz, about a million in all. Another 5 million were killed elsewhere. The global Jewish population before the Holocaust was 16.5 million, a number we’re only now approaching again, 70 years later. And yet, somehow, last month a school official and national parliamentary candidate in Canada admitted she “didn’t know what Auschwitz was”.

I grew up hearing “Never Forget” as a mantra to honor the 11 million victims of hate and murder at the hands of Nazis, and to ensure it never happens again. That a Canadian official has forgotten—that we have all forgotten many of the other genocides that haunt human history—suggests how easy it is to forget. And how much work it is to remember.

The material cost of remembering 50,000 Holocaust survivors & witnesses

Yad Vashem (“a place and a name”) represents the attempt to inscribe, preserve, and publicize the names of Jewish Holocaust victims who have no-one to remember them. Over four million names have been collected to date.

The USC Shoah Foundation, founded by Steven Spielberg in 1994 to remember Holocaust survivors and witnesses, is both smaller and larger than Yad Vashem. Smaller because the number of survivors and witnesses still alive in 1994 numbered far fewer than Yad Vashem‘s 4.3 million; larger because the foundation conducted video interviews: 100,000 hours of testimony from 50,000 individuals, plus recent additions of witnesses and survivors of other genocides around the world. Where Yad Vashem remembers those killed, the Shoah Foundation remembers those who survived.  What does it take to preserve the memories of 50,000 people?

I got a taste of the answer to that question at a workshop this week hosted by USC’s Digital Humanities Program, who were kind enough to give us a tour of the Shoah Foundation facilities. Sam Gustman, the foundation’s CTO and Associate Dean of USC’s Libraries, gave the tour.

Shoah Foundation Digitization Facility
Shoah Foundation Digitization Facility [via my camera]
Digital preservation it a complex process. In this case, it began by digitizing 235,000 analog Betacam SP Videocassettes, on which the original interviews had been recorded, a process which took from 2008-2012. This had to be done quickly (automatically/robotically), given that cassette tapes are prone to become sticky, brittle, and unplayable within a few decades due to hydrolysis. They digitized about 30,000 hours per year. The process eventually produced 8 petabytes (link to more technical details) of  lossless JPEG 2000 videos, roughly the equivalent of 2 million DVDs. Stacked on top of each other, those DVDs would reach three times higher than Burj Khalifa, the world’s tallest tower.

From there, the team spent quite some time correcting errors that existed in the original tapes, and ones that were introduced in the process of digitization. They employed a small army of signal processing students, patented new technologies for automated error detection & processing/cleaning, and wound up cleaning video from about 12,000 tapes. According to our tour guide, cleaning is still happening.

Lest you feel safe knowing that digitization lengthens the preservation time, turns out you’re wrong. Film lasts longer than most electronic storage, but making film copies would have cost the foundation $140,000,000 and made access incredibly difficult. Digital copies would only cost tens of millions of dollars, even though hard-drives couldn’t be trusted to last more than a decade. Their solution was a RAID hard-drive system in an Oracle StorageTek SL8500 (of which they have two), and a nightly process of checking video files for even the slightest of errors. If an error is found, a backup is loaded to a new cartridge, and the old cartridge is destroyed. Their two StorageTeks each fit over 10,000 drive cartridges, have 55 petabytes worth of storage space, weigh about 4,000 lbs, and are about the size of a New York City apartment. If a drive isn’t backed up and replaced within three years, they throw it out and replace it anyway, just in case. And this setup apparently saved the Shoah Foundation $6 million.

Digital StillCamera
StorageTek SL8500 [via CERN]
Oh, and they have another facility a few states away, connected directly via high-bandwidth fiber optic cables, where everything just described is duplicated in case California falls into the ocean.

Not bad for something that costs libraries $15,000 per year, which is about the same the library would pay for one damn chemistry journal.

So how much does it cost to remember 50,000 Holocaust witnesses and survivors for, say, 20 years? I mean, above and beyond the cost of building a cutting edge facility, developing new technologies of preservation, cooling and housing a freight container worth of hard drives, laying fiber optic cables below ground across several states, etc.? I don’t know. But I do know how much the Shoah Foundation would charge you to save 8 petabytes worth of videos for 20 years, if you were a USC Professor. They’d charge you $1,000/TB/20 years.

The Foundation’s videos take up 8,000 terabytes, which at $1,000 each would cost you $8 million per 20 years, or about half a million dollars per year. Combine that with all the physical space it takes up, and never forgetting the Holocaust is sounding rather prohibitive. And what about after 20 years, when modern operating systems forget how to read JPEG 2000 or interface with StorageTek T10000C Tape Drives, and the Shoah Foundation needs to undertake another massive data conversion? I can see why that Canadian official didn’t manage it.

The Reconcentration of Holocaust Survivors

While I appreciated the guided tour of the exhibit, and am thankful for the massive amounts of money, time, and effort scholars and donors are putting into remembering Holocaust survivors, I couldn’t help but be creeped out by the experience.

Our tour began by entering a high security facility. We signed our names on little pieces of paper and were herded through several layers of locked doors and small rooms. Not quite the way one expects to enter the project tasked with remembering and respecting the victims of genocide.

The Nazi’s assembly-line techniques for mass extermination led to starkly regular camps, like Auschwitz pictured above, laid out in efficient grids for the purpose of efficient control and killings. “Concentration camp”, by the way, refers to the concentration of people into small spaces, coming from “reconcentration camps” in Cuba. Now we’re concentrating 50,000 testimonies into a couple of closets with production line efficiency, reconcentrating the stories of people who dispersed across the world, so they’re all in one easy-to-access place.

Server farm [via wikipedia]
We’ve squeezed 100,000 hours of testimony into a server farm that consists of a series of boxes embedded in a series of larger boxes, all aligned to a grid; input, output, and eventual destruction of inferior entities handled by robots. Audits occur nightly.

The Shoah Foundation materials were collected, developed, and preserved with the utmost respect. The goal is just, the cause respectable, and the efforts incredibly important. And by reconcentrating survivors’ stories, they can now be accessed by the world. I don’t blame the Foundation for the parallels which are as much a construct of my mind as they are of the society in which this technology developed. Still, on Halloween, it’s hard to avoid reflecting on the material, monetary, and ultimately dehumanizing costs of processing ghosts into the machine.