Submissions to DH2017 (pt. 1)

Like many times before, I’m analyzing the international digital humanities conference, this time the 2017 conference in Montréal. The data I collect is available to any conference peer reviewer, though I do a bunch of scraping, cleaning, scrubbing, shampooing, anonymizing, etc. before posting these results.

This first post covers the basic landscape of submissions to next year’s conference: how many submissions there are, what they’re about, and so forth.

The analysis is opinionated and sprinkled with my own preliminary interpretations. If you disagree with something or want to see more, comment below, and I’ll try to address it in the inevitable follow-up. If you want the data, too bad—since it’s only available to reviewers, there’s an expectation of privacy. If you are sad for political or other reasons and live near me, I will bring you chocolate; if you are sad and do not live near me, you should move to Pittsburgh. We have chocolate.

Submission Numbers & Types

I’ll be honest, I was surprised by this year’s submission numbers. This will be the first ADHO conference held in North America since it was held in Nebraska in 2013, and I expected an influx of submissions from people who haven’t been able to travel off the continent for interim events. I expected the biggest submission pool yet.

Submissions per year by type.
Submissions per year by type.

What we see, instead, are fewer submissions than Kraków last year: 608 in all. The low number of submissions to Sydney was expected, given it was the first  conference held outside Europe or North America, but this year’s numbers suggests the DH Hype Machine might be cooling somewhat, after five years of rapid growth.

Annual presentations at DH conferences, compared to growth of DHSI in Victoria.
Annual presentations at DH conferences, compared to growth of DHSI in Victoria, 1999-2015.

We need some more years and some more DH-Hype-Machine Indicators to be sure, but I reckon things are slowing down.

The conference offers five submission tracks: Long Paper, Short Paper, Poster, Panel, and (new this year) Virtual Short Paper. The distribution is pretty consistent with previous years, with the only deviation being in Sydney in 2015. Apparently Australians don’t like short papers or posters?

I’ll be interested to see how the “Virtual Short Paper” works out. Since authors need to decide on this format before submitting, it doesn’t allow the flexibility of seeing if funding will become available over the course of the year. Still, it’s a step in the right direction, and I hope it succeeds.

Co-Authorship

More of the same! If nothing else, we get points for consistency.

Percent of Co-Authorships
Percent of Co-Authorships

Same as it ever was, nearly half of all submissions are by a single author. I don’t know if that’s because humanists need to justify their presentations to hiring and tenure committees who only respect single authorship, or if we’re just used to working alone. A full 80% of submissions have three or fewer authors, suggesting large teams are still not the norm, or that we’re not crediting all of the labor that goes into DH projects with co-authorships. [Post-publication note: See Adam Crymble’s comment, below, for important context]

Language, Topic, & Discipline

Authors choose from several possible submission languages. This year, 557 submissions were received in English, 40 in French, 7 in Spanish, 3 in Italian, and 1 in German. That’s the easy part.

The Powers That Be decided to make my life harder by changing up the categories authors can choose from for 2017. Thanks, Diane, ADHO, or whoever decided this.

In previous years, authors chose any number of keywords from a controlled vocabulary of about 100 possible topics that applied to their submission. Among other purposes, it helped match authors with reviewers. The potential topic list was relatively static for many years, allowing me to analyze the change in interest in topics over time.

This year, they added, removed, and consolidated a bunch of topics, as well as divided the controlled vocabulary into “Topics” (like metadata, morphology, and machine translation) and “Disciplines” (like disability studies, archaeology, and law). This is ultimately good for the conference, but makes it difficult for me to compare this against earlier years, so I’m holding off on that until another post.

But I’m not bitter.

This year’s options are at the bottom of this post in the appendix. Words in red were added or modified this year, and the last list are topics that used to exist, but no longer do.

So let’s take a look at this year’s breakdown by discipline.

Disciplinary breakdown of submissions
Disciplinary breakdown of submissions

Huh. “Computer science”—a topic which last year did not exist—represents nearly a third of submissions. I’m not sure how much this topic actually means anything. My guess is the majority of people using it are simply signifying the “digital” part of their “Digital Humanities” project, since the topic “Programming”—which existed in previous years but not this year—used to only connect to ~6% of submissions.

“Literary studies” represents 30% of all submissions, more than any previous year (usually around 20%), whereas “historical studies” has stayed stable with previous years, at around 20% of submissions. These two groups, however, can be pretty variable year-to-year, and I’m beginning to suspect that their use by authors is not consistent enough to take as meaningful. More on that in a later post.

That said, DH is clearly driven by lit, history, and library/information science. L/IS is a new and welcome category this year; I’ve always suspected that DHers are as much from L/IS as the humanities, and this lends evidence in that direction. Importantly, it also makes apparent a dearth in our disciplinary genealogies: when we trace the history of DH, we talk about the history of humanities computing, the history of the humanities, the history of computing, but rarely the history of L/IS.

I’ll have a more detailed breakdown later, but there were some surprises in my first impressions. “Film and Media Studies” is way up compared to previous years, as are other non-textual disciplines, which refreshingly shows (I hope) the rise of non-textual sources in DH. Finally. Gender studies and other identity- or intersectional-oriented submissions also seem to be on the rise (this may be an indication of US academic interests; we’ll need another few years to be sure).

If we now look at Topic choices (rather than Discipline choices, above), we see similar trends.

Topical distribution of submissions
Topical distribution of submissions

Again, these are just first impressions, there’ll be more soon. Text is still the bread and butter of DH, but we see more non-textual methods being used than ever. Some of the old favorites of DH, like authorship attribution, are staying pretty steady against previous years, whereas others, like XML and encoding, seem to be decreasing in interest year after year.

One last note on Topics and Disciplines. There’s a list of discontinued topics at the bottom of the appendix. Most of them have simply been consolidated into other categories, however one set is conspicuously absent: meta-discussions of DH. There are no longer categories for DH’s history, theory, how it’s taught, or its institutional support. These were pretty popular categories in previous years, and I’m not certain why they no longer exist. Perusing the submissions, there are certainly several that fall into these categories.

What’s Next

For Part 2 of this analysis, look forward to more thoughts on the topical breakdown of conference submissions; preliminary geographic and gender analysis of authors; and comparisons with previous years. After that, who knows? I take requests in the comments, but anyone who requests “Free Bird” is banned for life.

Appendix: Controlled Vocabulary

Words in red were added or modified this year, and the last list are topics that used to exist, but no longer do.

Topics

  • 3D Printing
  • agent modeling and simulation
  • archives, repositories, sustainability and preservation
  • audio, video, multimedia
  • authorship attribution / authority
  • bibliographic methods / textual studies
  • concording and indexing
  • content analysis
  • copyright, licensing, and Open Access
  • corpora and corpus activities
  • crowdsourcing
  • cultural and/or institutional infrastructure
  • data mining / text mining
  • data modeling and architecture including hypothesis-driven modeling
  • databases & dbms
  • digitisation – theory and practice
  • digitisation, resource creation, and discovery
  • diversity
  • encoding – theory and practice
  • games and meaningful play
  • geospatial analysis, interfaces & technology, spatio-temporal modeling/analysis & visualization
  • GLAM: galleries, libraries, archives, museums
  • hypertext
  • image processing
  • information architecture
  • information retrieval
  • interdisciplinary collaboration
  • interface & user experience design/publishing & delivery systems/user studies/user needs
  • internet / world wide web
  • knowledge representation
  • lexicography
  • linking and annotation
  • machine translation
  • metadata
  • mobile applications and mobile design
  • morphology
  • multilingual / multicultural approaches
  • natural language processing
  • networks, relationships, graphs
  • ontologies
  • project design, organization, management
  • query languages
  • scholarly editing
  • semantic analysis
  • semantic web
  • social media
  • software design and development
  • speech processing
  • standards and interoperability
  • stylistics and stylometry
  • teaching, pedagogy and curriculum
  • text analysis
  • text generation
  • universal/inclusive design
  • virtual and augmented reality
  • visualisation
  • xml

Disciplines

  • anthropology
  • archaeology
  • art history
  • asian studies
  • classical studies
  • computer science
  • creative and performing arts, including writing
  • cultural studies
  • design
  • disability studies
  • english studies
  • film and media studies
  • folklore and oral history
  • french studies
  • gender studies
  • geography
  • german studies
  • historical studies
  • italian studies
  • law
  • library & information science
  • linguistics
  • literary studies
  • medieval studies
  • music
  • near eastern studies
  • philology
  • philosophy
  • renaissance studies
  • rhetorical studies
  • sociology
  • spanish and spanish american studies
  • theology
  • translation studies

No Longer Exist

  • Digital Humanities – Facilities
  • Digital Humanities – Institutional Support
  • Digital Humanities – Multilinguality
  • Digital Humanities – Nature And Significance
  • Digital Humanities – Pedagogy And Curriculum
  • Genre-specific Studies: Prose, Poetry, Drama
  • History Of Humanities Computing/digital Humanities
  • Maps And Mapping
  • Media Studies
  • Other
  • Programming
  • Prosodic Studies
  • Publishing And Delivery Systems
  • Spatio-temporal Modeling, Analysis And Visualisation
  • User Studies / User Needs

Lessons From Digital History’s Antecedents

The below is the transcript from my October 29 keynote presented to the Creativity and The City 1600-2000 conference in Amsterdam, titled “Punched-Card Humanities”. I survey historical approaches to quantitative history, how they relate to the nomothetic/idiographic divide, and discuss some lessons we can learn from past successes and failures. For ≈200 relevant references, see this Zotero folder.


Title Slide
Title Slide

I’m here to talk about Digital History, and what we can learn from its quantitative antecedents. If yesterday’s keynote was framing our mutual interest in the creative city, I hope mine will help frame our discussions around the bottom half of the poster; the eHumanities perspective.

Specifically, I’ve been delighted to see at this conference, we have a rich interplay between familiar historiographic and cultural approaches, and digital or eHumanities methods, all being brought to bear on the creative city. I want to take a moment to talk about where these two approaches meet.

Yesterday’s wonderful keynote brought up the complicated goal of using new digital methods to explore the creative city, without reducing the city to reductive indices. Are we living up to that goal? I hope a historical take on this question might help us move in this direction, that by learning from those historiographic moments when formal methods failed, we can do better this time.

Creativity Conference Theme
Creativity Conference Theme

Digital History is different, we’re told. “New”. Many of us know historians who used computers in the 1960s, for things like demography or cliometrics, but what we do today is a different beast.

Commenting on these early punched-card historians, in 1999, Ed Ayers wrote, quote, “the first computer revolution largely failed.” The failure, Ayers, claimed, was in part due to their statistical machinery not being up to the task of representing the nuances of human experience.

We see this rhetoric of newness or novelty crop up all the time. It cropped up a lot in pioneering digital history essays by Roy Rosenzweig and Dan Cohen in the 90s and 2000s, and we even see a touch of it, though tempered, in this conference’s theme.

In yesterday’s final discussion on uncertainty, Dorit Raines reminded us the difference between quantitative history in the 70s and today’s Digital History is that today’s approaches broaden our sources, whereas early approaches narrowed them.

Slide (r)evolution
Slide (r)evolution

To say “we’re at a unique historical moment” is something common to pretty much everyone, everywhere, forever. And it’s always a little bit true, right?

It’s true that every historical moment is unique. Unprecedented. Digital History, with its unique combination of public humanities, media-rich interests, sophisticated machinery, and quantitative approaches, is pretty novel.

But as the saying goes, history never repeats itself, but it rhymes. Each thread making up Digital History has a long past, and a lot of the arguments for or against it have been made many times before. Novelty is a convenient illusion that helps us get funding.

Not coincidentally, it’s this tension I’ll highlight today: between revolution and evolution, between breaks and continuities, and between the historians who care more about what makes a moment unique, and those who care more about what connects humanity together.

To be clear, I’m operating on two levels here: the narrative and the metanarrative. The narrative is that the history of digital history is one of continuities and fractures; the metanarrative is that this very tension between uniqueness and self-similarity is what swings the pendulum between quantitative and qualitative historians.

Now, my claim that debates over continuity and discontinuity are a primary driver of the quantitative/qualitative divide comes a bit out of left field — I know — so let me back up a few hundred years and explain.

Chronology
Chronology

Francis Bacon wrote that knowledge would be better understood if it were collected into orderly tables. His plea extended, of course, to historical knowledge, and inspired renewed interest in a genre already over a thousand years old: tabular chronology.

These chronologies were world histories, aligning the pasts of several regions which each reconned the passage of time differently.

Isaac Newton inherited this tradition, and dabbled throughout his life in establishing a more accurate universal chronology, aligning Biblical history with Greek legends and Egyptian pharoahs.

Newton brought to history the same mind he brought to everything else: one of stars and calculations. Like his peers, Newton relied on historical accounts of astronomical observations to align simultaneous events across thousands of miles. Kepler and Scaliger, among others, also partook in this “scientific history”.

Where Newton departed from his contemporaries, however, was in his use of statistics for sorting out history. In the late 1500s, the average or arithmetic mean was popularized by astronomers as a way of smoothing out noisy measurements. Newton co-opted this method to help him estimate the length of royal reigns, and thus the ages of various dynasties and kingdoms.

On average, Newton figured, a king’s reign lasted 18-20 years. If the history books record 5 kings, that means the dynasty lasted between 90 and 100 years.

Newton was among the first to apply averages to fill in chronologies, though not the first to apply them to human activities. By the late 1600s, demographic statistics of contemporary life — of births, burials and the like — were becoming common. They were ways of revealing divinely ordered regularities.

Incidentally, this is an early example of our illustrious tradition of uncritically appropriating methods from the natural sciences. See? We’ve all done it, even Newton!  

Joking aside, this is an important point: statistical averages represented divine regularities. Human statistics began as a means to uncover universal truths, and they continue to be employed in that manner. More on that later, though.

Musgrave Quote

Newton’s method didn’t quite pass muster, and skepticism grew rapidly on the whole prospect of mathematical history.

Criticizing Newton in 1782, for example, Samuel Musgrave argued, in part, that there are no discernible universal laws of history operating in parallel to the universal laws of nature. Nature can be mathematized; people cannot.

Not everyone agreed. Francesco Algarotti passionately argued that Newton’s calculation of average reigns, the application of math to history, was one of his greatest achievements. Even Voltaire tried Newton’s method, aligning a Chinese chronology with Western dates using average length of reigns.

Nomothetic / Idiographic
Nomothetic / Idiographic

Which brings us to the earlier continuity/discontinuity point: quantitative history stirs debate in part because it draws together two activities Immanuel Kant sets in opposition: the tendency to generalize, and the tendency to specify.

The tendency to generalize, later dubbed Nomothetic, often describes the sciences: extrapolating general laws from individual observations. Examples include the laws of gravity, the theory of evolution by natural selection, and so forth.

The tendency to specify, later dubbed Idiographic, describes, mostly, the humanities: understanding specific, contingent events in their own context and with awareness of subjective experiences. This could manifest as a microhistory of one parish in the French Revolution, a critical reading of Frankenstein focused on gender dynamics, and so forth.  

These two approaches aren’t mutually exclusive, and they frequently come in contact around scholarship of the past. Paleontologists, for example, apply general laws of biology and geology to tell the specific story of prehistoric life on Earth. Astronomers, similarly, combine natural laws and specific observations to trace to origins of our universe.

Historians have, with cyclically recurring intensity, engaged in similar efforts. One recent nomothetic example is that of cliodynamics: the practitioners use data and simulations to discern generalities such as why nations fail or what causes war. Recent idiographic historians associate more with the cultural and theoretical turns in historiography, often focusing on microhistories or the subjective experiences of historical actors.

Both tend to meet around quantitative history, but the conversation began well before the urge to quantify. They often fruitfully align and improve one another when working in concert; for example when the historian cites a common historical pattern in order to highlight and contextualize an event which deviates from it.

But more often, nomothetic and idiographic historians find themselves at odds. Newton extrapolated “laws” for the length of kings, and was criticized for thinking mathematics had any place in the domain of the uniquely human. Newton’s contemporaries used human statistics to argue for divine regularities, and this was eventually criticized as encroaching on human agency, free will, and the uniqueness of subjective experience.

Bacon Taxonomy
Bacon Taxonomy

I’ll highlight some moments in this debate, focusing on English-speaking historians, and will conclude with what we today might learn from foibles of the quantitative historians who came before.

Let me reiterate, though, that quantitative is not nomothetic history, but they invite each other, so I shouldn’t be ahistorical by dividing them.

Take Henry Buckle, who in 1857 tried to bridge the two-culture divide posed by C.P. Snow a century later. He wanted to use statistics to find general laws of human progress, and apply those generalizations to the histories of specific nations.

Buckle was well-aware of historiography’s place between nomothetic and idiographic cultures, writing: “it is the business of the historian to mediate between these two parties, and reconcile their hostile pretensions by showing the point at which their respective studies ought to coalesce.”

In direct response, James Froud wrote that there can be no science of history. The whole idea of Science and History being related was nonsensical, like talking about the colour of sound. They simply do not connect.

This was a small exchange in a much larger Victorian debate pitting narrative history against a growing interest in scientific history. The latter rose on the coattails of growing popular interest in science, much like our debates today align with broader discussions around data science, computation, and the visible economic successes of startup culture.

This is, by the way, contemporaneous with something yesterday’s keynote highlighted: the 19th century drive to establish ‘urban laws’.

By now, we begin seeing historians leveraging public trust in scientific methods as a means for political control and pushing agendas. This happens in concert with the rise of punched cards and, eventually, computational history. Perhaps the best example of this historical moment comes from the American Census in the late 19th century.

19C Map
19C Map

Briefly, a group of 19th century American historians, journalists, and census chiefs used statistics, historical atlases, and the machinery of the census bureau to publicly argue for the disintegration of the U.S. Western Frontier in the late 19th century.

These moves were, in part, made to consolidate power in the American West and wrestle control from the native populations who still lived there. They accomplished this, in part, by publishing popular atlases showing that the western frontier was so fractured that it was difficult to maintain and defend. 1

The argument, it turns out, was pretty compelling.

Hollerith Cards
Hollerith Cards

Part of what drove the statistical power and scientific legitimacy of these arguments was the new method, in 1890, of entering census data on punched cards and processing them in tabulating machines. The mechanism itself was wildly successful, and the inventor’s company wound up merging with a few others to become IBM. As was true of punched-card humanities projects through the time of Father Roberto Busa, this work was largely driven by women.

It’s worth pausing to remember that the history of punch card computing is also a history of the consolidation of government power. Seeing like a computer was, for decades, seeing like a state. And how we see influences what we see, what we care about, how we think.  

Recall the Ed Ayers quote I mentioned at the beginning of his talk. He said the statistical machinery of early quantitative historians could not represent the nuance of historical experience. That doesn’t just mean the math they used; it means the actual machinery involved.

See, one of the truly groundbreaking punch card technologies at the turn of the century was the card sorter. Each card could represent a person, or household, or whatever else, which is sort of legible one-at-a-time, but unmanageable in giant stacks.

Now, this is still well before “computers”, but machines were being developed which could sort these cards into one of twelve pockets based on which holes were punched. So, for example, if you had cards punched for people’s age, you could sort the stacks into 10 different pockets to break them up by age groups: 0-9, 10-19, 20-29, and so forth.

This turned out to be amazing for eyeball estimates. If your 20-29 pocket was twice as full as your 10-19 pocket after all the cards were sorted, you had a pretty good idea of the age distribution.

Over the next 50 years, this convenience would shape the social sciences. Consider demographics or marketing. Both developed in the shadow of punch cards, and both relied heavily on what’s called “segmentation”, the breaking of society into discrete categories based on easily punched attributes. Age ranges, racial background, etc. These would be used to, among other things, determine who was interested in what products.

They’d eventually use statistics on these segments to inform marketing strategies.

But, if you look at the statistical tests that already existed at the time, these segmentations weren’t always the best way to break up the data. For example, age flows smoothly between 0 and 100; you could easily contrive a statistical test to show that, as a person ages, she’s more likely to buy one product over another, over a set of smooth functions.

That’s not how it worked though. Age was, and often still is, chunked up into ten or so distinct ranges, and those segments were each analyzed individually, as though they were as distinct from one another as dogs and cats. That is, 0-9 is as related to 10-19 as it is to 80-89.

What we see here is the deep influence of technological affordances on scholarly practice, and it’s an issue we still face today, though in different form.

As historians began using punch cards and social statistics, they inherited, or appropriated, a structure developed for bureaucratic government processing, and were rightly soon criticized for its dehumanizing qualities.

Pearson Stats

Unsurprisingly, given this backdrop, historians in the first few decades of the 20th century often shied away from or rejected quantification.

The next wave of quantitative historians, who reached their height in the 1930s, approached the problem with more subtlety than the previous generations in the 1890s and 1860s.

Charles Beard’s famous Economic Interpretation of the Constitution of the United States used economic and demographic stats to argue that the US Constitution was economically motivated. Beard, however, did grasp the fundamental idiographic critique of quantitative history, claiming that history was, quote:

“beyond the reach of mathematics — which cannot assign meaningful values to the imponderables, immeasurables, and contingencies of history.”

The other frequent critique of quantitative history, still heard, is that it uncritically appropriates methods from stats and the sciences.

This also wasn’t entirely true. The slide behind me shows famed statistician Karl Pearson’s attempt to replicate the math of Isaac Newton that we saw earlier using more sophisticated techniques.

By the 1940s, Americans with graduate training in statistics like Ernest Rubin were actively engaging historians in their own journals, discussing how to carefully apply statistics to historical research.

On the other side of the channel, the French Annales historians were advocating longue durée history; a move away from biographies to prosopographies, from events to structures. In its own way, this was another historiography teetering on the edge between the nomothetic and idiographic, an approach that sought to uncover the rhymes of history.

Interest in quantitative approaches surged again in the late 1950s, led by a new wave of Annales historians like Fernand Braudel and American quantitative manifestos like those by Benson, Conrad, and Meyer.

William Aydolette went so far as to point out that all historians implicitly quantify, when they use words like “many”, “average”, “representative”, or “growing” – and the question wasn’t can there be quantitative history, but when should formal quantitative methods be utilized?

By 1968, George Murphy, seeing the swell of interest, asked a very familiar question: why now? He asked why the 1960s were different from the 1860s or 1930s, why were they, in that historical moment, able to finally do it right? His answer was that it wasn’t just the new technologies, the huge datasets, the innovative methods: it was the zeitgeist. The 1960s was the right era for computational history, because it was the era of computation.

By the early 70s, there was a historian using a computer in every major history department. Quantitative history had finally grown into itself.

Popper Historicism
Popper Historicism

Of course, in retrospect, Murphy was wrong. Once the pendulum swung too far towards scientific history, theoretical objections began pushing it the other way.

In Poverty of Historicism, Popper rejected scientific history, but mostly as a means to reject historicism outright. Popper’s arguments represent an attack from outside the historiographic tradition, but one that eventually had significant purchase even among historians, as an indication of the failure of nomothetic approaches to culture. It is, to an extent, a return to Musgrave’s critique of Isaac Newton.

At the same time, we see growing criticism from historians themselves. Arthur Schlesinger famously wrote that “important questions are important precisely because they are not susceptible to quantitative answers.”

There was a converging consensus among English-speaking historians, as in the early 20th century, that quantification erased the essence of the humanities, that it smoothed over the very inequalities and historical contingencies we needed to highlight.

Barzun's Clio
Barzun’s Clio

Jacques Barzun summed it up well, if scathingly, saying history ought to free us from the bonds of the machine, not feed us into it.

The skeptics prevailed, and the pendulum swung the other way. The post-structural, cultural, and literary-critical turns in historiography pivoted away from quantification and computation. The final nail was probably Fogel and Engerman’s 1974 Time on the Cross, which reduced the Atlantic  slave-trade to economic figures, and didn’t exactly treat the subject with nuance and care.

The cliometricians, demographers, and quantitative historians didn’t disappear after the cultural turn, but their numbers shrunk, and they tended to find themselves in social science departments, or fled here to Europe, where social and economic historians were faring better.

Which brings us, 40 years on, to the middle of a new wave of quantitative or “formal method” history. Ed Ayers, like George Murphy before him, wrote, essentially, this time it’s different.

And he’s right, to a point. Many here today draw their roots not to the cliometricians, but to the very cultural historians who rejected quantification in the first place. Ours is a digital history steeped in the the values of the cultural turn, that respects social justice and seeks to use our approaches to shine a light on the underrepresented and the historically contingent.

But that doesn’t stop a new wave of critiques that, if not repeating old arguments, certainly rhymes. Take Johanna Drucker’s recent call to rebrand data as capta, because when we treat observations objectively as if it were the same as the phenomena observed, we collapse the critical distance between the world and our interpretation of it. And interpretation, Drucker contends, is the foundation on which humanistic knowledge is based.

Which is all to say, every swing of the pendulum between idiographic and nomothetic history was situated in its own historical moment. It’s not a clock’s pendulum, but Foucault’s pendulum, with each swing’s apex ending up slightly off from the last. The issues of chronology and astronomy are different from those of eugenics and manifest destiny, which are themselves different from the capitalist and dehumanizing tendencies of 1950s mainframes.

But they all rhyme. Quantitative history has failed many times, for many reasons, but there are a few threads that bind them which we can learn from — or, at least, a few recurring mistakes we can recognize in ourselves and try to avoid going forward.

We won’t, I suspect, stop the pendulum’s inevitable about-face, but at least we can continue our work with caution, respect, and care.

Which is to be Master?
Which is to be Master?

The lesson I’d like to highlight may be summed up in one question, asked by Humpty Dumpty to Alice: which is to be master?

Over several hundred years of quantitative history, the advice of proponents and critics alike tends to align with this question. Indeed in 1956, R.G. Collingwood wrote specifically “statistical research is for the historian a good servant but a bad master,” referring to the fact that statistical historical patterns mean nothing without historical context.

Schlesinger, the guy who I mentioned earlier who said historical questions are interesting precisely because they can’t be quantified, later acknowledged that while quantitative methods can be useful, they’ll lead historians astray. Instead of tackling good questions, he said, historians will tackle easily quantifiable ones — and Schlesinger was uncomfortable by the tail wagging the dog.

Which is to be master - questions
Which is to be master – questions

I’ve found many ways in which historians have accidentally given over agency to their methods and machines over the years, but these five, I think, are the most relevant to our current moment.

Unfortunately since we running out of time, you’ll just have to trust me that these are historically recurring.

Number 1 is the uncareful appropriation of statistical methods for historical uses. It controls us precisely because it offers us a black box whose output we don’t truly understand.

A common example I see these days is in network visualizations. People visualize nodes and edges using what are called force-directed layouts in Gephi, but they don’t exactly understand what those layouts mean. As these layouts were designed, physical proximity of nodes are not meant to represent relatedness, yet I’ve seen historians interpret two neighboring nodes as being related because of their visual adjacency.

This is bad. It’s false. But because we don’t quite understand what’s happening, we get lured by the black box into nonsensical interpretations.

The second way methods drive us is in our reliance on methodological imports. That is, we take the time to open the black box, but we only use methods that we learn from statisticians or scientists. Even when we fully understand the methods we import, if we’re bound to other people’s analytic machinery, we’re bound to their questions and biases.

Take the example I mentioned earlier, with demographic segmentation, punch card sorters, and its influence on social scientific statistics. The very mechanical affordances of early computers influence the sort of questions people asked for decades: how do discrete groups of people react to the world in different ways, and how do they compare with one another?

The next thing to watch out for is naive scientism. Even if you know the assumptions of your methods, and you develop your own techniques for the problem at hand, you still can fall into the positivist trap that Johanna Drucker warns us about — collapsing the distance between what we observe and some underlying “truth”.

This is especially difficult when we’re dealing with “big data”. Once you’re working with so much material you couldn’t hope to read it all, it’s easy to be lured into forgetting the distance between operationalizations and what you actually intend to measure.

For instance, if I’m finding friendships in Early Modern Europe by looking for particular words being written in correspondences, I will completely miss the existence of friends who were neighbors, and thus had no reason to write letters for us to eventually read.

A fourth way we can be mislead by quantitative methods is the ease with which they lend an air of false precision or false certainty.

This is the problem Matthew Lincoln and the other panelists brought up yesterday, where missing or uncertain data, once quantified, falsely appears precise enough to make comparisons.

I see this mistake crop up in early and recent quantitative histories alike; we measure, say, the changing rate of transnational shipments over time, and notice a positive trend. The problem is the positive difference is quite small, easily attributable to error, but because numbers are always precise, it still feels like we’re being more precise than doing a qualitative assessment. Even when it’s unwarranted.

The last thing to watch out for, and maybe the most worrisome, is the blinders quantitative analysis places on historians who don’t engage in other historiographic methods. This has been the downfall of many waves of quantitative history in the past; the inability to care about or even see that which can’t be counted.

This was, in part, was what led Time on the Cross to become the excuse to drive historians from cliometrics. The indicators of slavery that were measurable were sufficient to show it to have some semblance of economic success for black populations; but it was precisely those aspects of slavery they could not measure that were the most historically important.

So how do we regain mastery in light of these obstacles?

Which is to be master - answers
Which is to be master – answers

1. Uncareful Appropriation – Collaboration

Regarding the uncareful appropriation of methods, we can easily sidestep the issue of accidentally misusing a method by collaborating with someone who knows how the method works. This may require a translator; statisticians can as easily misunderstand historical problems as historians can misunderstand statistics.

Historians and statisticians can fruitfully collaborate, though, if they have someone in the middle trained to some extent in both — even if they’re not themselves experts. For what it’s worth, Dutch institutions seem to be ahead of the game in this respect, which is something that should be fostered.

2. Reliance on Imports – Statistical Training

Getting away from reliance on disciplinary imports may take some more work, because we ourselves must learn the approaches well enough to augment them, or create our own. Right now in DH this is often handled by summer institutes and workshop series, but I’d argue those are not sufficient here. We need to make room in our curricula for actual methods courses, or even degrees focused on methodology, in the same fashion as social scientists, if we want to start a robust practice of developing appropriate tools for our own research.

3. Naive Scientism – Humanities History

The spectre of naive scientism, I think, is one we need to be careful of, but we are also already well-equipped to deal with it. If we want to combat the uncareful use of proxies in digital history, we need only to teach the history of the humanities; why the cultural turn happened, what’s gone wrong with positivistic approaches to history in the past, etc.

Incidentally, I think this is something digital historians already guard well against, but it’s still worth keeping in mind and making sure we teach it. Particularly, digital historians need to remain aware of parallel approaches from the past, rather than tracing their background only to the textual work of people like Roberto Busa in Italy.

4. False Precision & Certainty – Simulation & Triangulation

False precision and false certainty have some shallow fixes, and some deep ones. In the short term, we need to be better about understanding things like confidence intervals and error bars, and use methods like what Matthew Lincoln highlighted yesterday.

In the long term, though, digital history would do well to adopt triangulation strategies to help mitigate against these issues. That means trying to reach the same conclusion using multiple different methods in parallel, and seeing if they all agree. If they do, you can be more certain your results are something you can trust, and not just an accident of the method you happened to use.

5. Quantitative Blinders – Rejecting Digital History

Avoiding quantitative blinders – that is, the tendency to only care about what’s easily countable – is an easy fix, but I’m afraid to say it, because it might put me out of a job. We can’t call what we do digital history, or quantitative history, or cliometrics, or whatever else. We are, simply, historians.

Some of us use more quantitative methods, and some don’t, but if we’re not ultimately contributing to the same body of work, both sides will do themselves a disservice by not bringing every approach to bear in the wide range of interests historians ought to pursue.

Qualitative and idiographic historians will be stuck unable to deal with the deluge of material that can paint us a broader picture of history, and quantitative or nomothetic historians will lose sight of the very human irregularities that make history worth studying in the first place. We must work together.

If we don’t come together, we’re destined to remain punched-card humanists – that is, we will always be constrained and led by our methods, not by history.

Creativity Theme Again
Creativity Theme Again

Of course, this divide is a false one. There are no purely quantitative or purely qualitative studies; close-reading historians will continue to say things like “representative” or “increasing”, and digital historians won’t start publishing graphs with no interpretation.

Still, silos exist, and some of us have trouble leaving the comfort of our digital humanities conferences or our “traditional” history conferences.

That’s why this conference, I think, is so refreshing. It offers a great mix of both worlds, and I’m privileged and thankful to have been able to attend. While there are a lot of lessons we can still learn from those before us, from my vantage point, I think we’re on the right track, and I look forward to seeing more of those fruitful combinations over the course of today.

Thank you.

Notes:

  1. This account is influenced from some talks by Ben Schmidt. Any mistakes are from my own faulty memory, and not from his careful arguments.

[f-s d] Cetus

Quoting Liz Losh, Jacqueline Wernimont tweeted that behind every visualization is a spreadsheet.

But what, I wondered, is behind every spreadsheet?

Space whales.

Okay, maybe space whales aren’t behind every spreadsheet, but they’re behind this one, dated 1662, notable for the gigantic nail it hammered into the coffin of our belief that heaven above is perfect and unchanging. The following post is the first in my new series full-stack dev (f-s d), where I explore the secret life of data. 1

Hevelius. Mercurius in Sole visus (1662).
Hevelius. Mercurius in Sole visus (1662).

The Princess Bride teaches us a good story involves “fencing, fighting, torture, revenge, giants, monsters, chases, escapes, true love, miracles”. In this story, Cetus, three of those play a prominent role: (red) giants, (sea) monsters, and (cosmic) miracles. Also Greek myths, interstellar explosions, beer-brewing astronomers, meticulous archivists, and top-secret digitization facilities. All together, they reveal how technologies, people, and stars aligned to stick this 350-year-old spreadsheet in your browser today.

The Sea

When Aethiopian queen Cassiopeia claimed herself more beautiful than all the sea nymphs, Poseidon was, let’s say, less than pleased. Mildly miffed. He maybe sent a sea monster named Cetus to destroy Aethiopia.

Because obviously the best way to stop a flood is to drown a princess, Queen Cassiopeia chained her daughter to the rocks as a sacrifice to Cetus. Thankfully the hero Perseus just happened to be passing through Aethiopia, returning home after beheading Medusa, that snake-haired woman whose eyes turned living creatures to stone. Perseus (depicted below as the world’s most boring 2-ball juggler) revealed Medusa’s severed head to Cetus, turning the sea monster to stone and saving the princess. And then they got married because traditional gender roles I guess?

Corinthian vase depicting Perseus, Andromeda and Ketos.
Corinthian vase depicting Perseus, Andromeda and Ketos. [via]
Cetaceans, you may recall from grade school, are those giant carnivorous sea-mammals that Captain Ahab warned you about. Cetaceans, from Cetus. You may also remember we have a thing for naming star constellations and dividing the sky up into sections (see the Zodiac), and that we have a long history of comparing the sky to the ocean (see Carl Sagan or Star Trek IV).

It should come as no surprise, then, that we’ve designated a whole section of space as ‘The Sea‘, home of Cetus (the whale), Aquarius (the God) and Eridanus (the water pouring from Aquarius’ vase, source of river floods), Pisces (two fish tied together by a rope, which makes total sense I promise), Delphinus (the dolphin), and Capricornus (the goat-fish. Listen, I didn’t make these up, okay?).

Jamieson's Celestial Atlas, Plate 21 (1822).
Jamieson’s Celestial Atlas, Plate 21 (1822). [via]
Jamieson's Celestial Atlas, Plate 23 (1822).
Jamieson’s Celestial Atlas, Plate 23 (1822). [via]
Ptolemy listed most of these constellations in his Almagest (ca. 150 A.D.), including Cetus, along with descriptions of over a thousand stars. Ptolemy’s model, with Earth at the center and the constellations just past Saturn, set the course of cosmology for over a thousand years.

Ptolemy's Cosmos [by Robert A. Hatch]
Ptolemy’s Cosmos [by Robert A. Hatch]
In this cosmos, reigning in Western Europe for centuries past Copernicus’ death in 1543, the stars were fixed and motionless. There was no vacuum of space; every planet was embedded in a shell made of aether or quintessence (quint-essence, the fifth element), and each shell sat atop the next until reaching the celestial sphere. This last sphere held the stars, each one fixed to it as with a pushpin. Of course, all of it revolved around the earth.

The domain of heavenly spheres was assumed perfect in all sorts of ways. They slid across each other without friction, and the planets and stars were perfect spheres which could not change and were unmarred by inconsistencies. One reason it was so difficult for even “great thinkers” to believe the earth orbited the sun, rather than vice-versa, was because such a system would be at complete odds with how people knew physics to work. It would break gravity, break motion, and break the outer perfection of the cosmos, which was essential (…heh) 2 to our notions of, well, everything.

Which is why, when astronomers with their telescopes and their spreadsheets started systematically observing imperfections in planets and stars, lots of people didn’t believe them—even other astronomers. Over the course of centuries, though, these imperfections became impossible to ignore, and helped launch the earth in rotation ’round the sun.

This is the story of one such imperfection.

A Star is Born (and then dies)

Around 1296 A.D., over the course of half a year, a red dwarf star some 2 quadrillion miles away grew from 300 to 400 times the size of our sun. Over the next half year, the star shrunk back down to its previous size. Light from the star took 300 years to reach earth, eventually striking the retina of German pastor David Fabricius. It was very early Tuesday morning on August 13, 1596, and Pastor Fabricius was looking for Jupiter. 3

At that time of year, Jupiter would have been near the constellation Cetus (remember our sea monster?), but Fabricius noticed a nearby bright star (labeled ‘Mira’ in the below figure) which he did not remember from Ptolemy or Tycho Brahe’s star charts.

Mira Ceti and Jupiter. [via]
Mira Ceti and Jupiter. [via]
Spotting an unrecognized star wasn’t unusual, but one so bright in so common a constellation was certainly worthy of note. He wrote down some observations of the star throughout September and October, after which it seemed to have disappeared as suddenly as it appeared. The disappearance prompted Fabricius to write a letter about it to famed astronomer Tycho Brahe, who had described a similar appearing-then-disappearing star between 1572 and 1574. Brahe jotted Fabricius’ observations down in his journal. This sort of behavior, after all, was a bit shocking for a supposedly fixed and unchanging celestial sphere.

More shocking, however, was what happened 13 years later, on February 15, 1609. Once again searching for Jupiter, pastor Fabricius spotted another new star in the same spot as the last one. Tycho Brahe having recently died, Fabricius wrote a letter to his astronomical successor, Johannes Kepler, describing the miracle. This was unprecedented. No star had ever vanished and returned, and nobody knew what to make of it.

Unfortunately for Fabricius, nobody did make anything of it. His observations were either ignored or, occasionally, dismissed as an error. To add injury to insult, a local goose thief killed Fabricius with a shovel blow, thus ending his place in this star’s story, among other stories.

Mira Ceti

Three decades passed. On the winter solstice, 1638, Johannes Phocylides Holwarda prepared to view a lunar eclipse. He reported with excitement the star’s appearance and, by August 1639, its disappearance. The new star, Holwarda claimed, should be considered of the same class as Brahe, Kepler, and Fabricius’ new stars. As much a surprise to him as Fabricius, Holwarda saw the star again on November 7, 1639. Although he was not aware of it, his new star was the same as the one Fabricius spotted 30 years prior.

Two more decades passed before the new star in the neck of Cetus would be systematically sought and observed, this time by Johannes Hevelius: local politician, astronomer, and brewer of fine beers. By that time many had seen the star, but it was difficult to know whether it was the same celestial body, or even what was going on.

Hevelius brought everything together. He found recorded observations from Holwarda, Fabricius, and others, from today’s Netherlands to Germany to Poland, and realized these disparate observations were of the same star. Befitting its puzzling and seemingly miraculous nature, Hevelius dubbed the star Mira (miraculous) Ceti. The image below, from Hevelius’ Firmamentum Sobiescianum sive Uranographia (1687), depicts Mira Ceti as the bright star in the sea monster’s neck.

Hevelius. Firmamentum Sobiescianum sive Uranographia (1687).
Hevelius. Firmamentum Sobiescianum sive Uranographia (1687).

Going further, from 1659 to 1683, Hevelius observed Mira Ceti in a more consistent fashion than any before. There were eleven recorded observations in the 65 years between Fabricius’ first sighting of the star and Hevelius’ undertaking; in the following three, he had recorded 75 more such observations. Oddly, while Hevelius was a remarkably meticulous observer, he insisted the star was inherently unpredictable, with no regularity in its reappearances or variable brightness.

Beginning shortly after Hevelius, the astronomer Ismaël Boulliau also undertook a thirty year search for Mira Ceti. He even published a prediction, that the star would go through its vanishing cycle every 332 days, which turned out to be incredibly accurate. As today’s astronomers note, Mira Ceti‘s brightness increases and decreases by several orders of magnitude every 331 days, caused by an interplay between radiation pressure and gravity in the star’s gaseous exterior.

Mira Ceti composite taken by NASA's Galaxy Evolution Explorer. [via]
Mira Ceti composite taken by NASA’s Galaxy Evolution Explorer. [via]
While of course Boulliau didn’t arrive at today’s explanation for Mira‘s variability, his solution did require a rethinking of the fixity of stars, and eventually contributed to the notion that maybe the same physical laws that apply on Earth also rule the sun and stars.

Spreadsheet Errors

But we’re not here to talk about Boulliau, or Mira Ceti. We’re here to talk about this spreadsheet:

Hevelius. Mercurius in Sole visus (1662).
Hevelius. Mercurius in Sole visus (1662).

This snippet represents Hevelius’ attempt to systematically collected prior observations of Mira Ceti. Unreasonably meticulous readers of this post may note an inconsistency: I wrote that Johannes Phocylides Holwarda observed Mira Ceti on November 7th, 1639, yet Hevelius here shows Holwarda observing the star on December 7th, 1639, an entire month later. The little notes on the side are basically the observers saying: “wtf this star keeps reappearing???”

This mistake was not a simple printer’s error. It reappeared in Hevelius’ printed books three times: 1662, 1668, and 1685. This is an early example of what Raymond Panko and others call a spreadsheet error, which appear in nearly 90% of 21st century spreadsheets. Hand-entry is difficult, and mistakes are bound to happen. In this case, a game of telephone also played a part: Hevelius may have pulled some observations not directly from the original astronomers, but from the notes of Tycho Brahe and Johannes Kepler, to which he had access.

Unfortunately, with so few observations, and many of the early ones so sloppy, mistakes compound themselves. It’s difficult to predict a variable star’s periodicity when you don’t have the right dates of observation, which may have contributed to Hevelius’ continued insistence that Mira Ceti kept no regular schedule. The other contributing factor, of course, is that Hevelius worked without a telescope and under cloudy skies, and stars are hard to measure under even the best circumstances.

To Be Continued

Here ends the first half of Cetus. The second half will cover how Hevelius’ book was preserved, the labor behind its digitization, and a bit about the technologies involved in creating the image you see.

Early modern astronomy is a particularly good pre-digital subject for full-stack dev (f-s d), since it required vast international correspondence networks and distributed labor in order to succeed. Hevelius could not have created this table, compiled from the observations of several others, without access to cutting-edge astronomical instruments and the contemporary scholarly network.

You may ask why I included that whole section on Greek myths and Ptolemy’s constellations. Would as many early modern astronomers have noticed Mira Ceti had it not sat in the center of a familiar constellation, I wonder?

I promised this series will be about the secret life of data, answering the question of what’s behind a spreadsheet. Cetus is only the first story (well, second, I guess), but the idea is to upturn the iceberg underlying seemingly mundane datasets to reveal the complicated stories of their creation and usage. Stay-tuned for future installments.

Notes:

  1. I’m retroactively adding my blog rant about data underlying an equality visualization to the f-s d series.
  2. this pun is only for historians of science
  3. Most of the historiography in this and the following section are summarized from Robert A. Hatch’s “Discovering Mira Ceti: Celestial Change and Cosmic Continuity

Experience

Last week, I publicly outed myself as a non-tenure-track academic diagnosed on the autism spectrum, 1 hoping that doing so might help other struggling academics find solace knowing they are not alone. I was unprepared for the outpouring of private and public support. Friends, colleagues, and strangers thanked me for helping them feel a little less alone, which in turn helped me feel much less alone. Thank you all, deeply and sincerely.

In a similar spirit, for interested allies and struggling fellows, this post is about how my symptoms manifest in the academic world, and how I manage them. 2

Navigating the social world is tough—a fact that may surprise some of my friends and most of my colleagues. I do alright at conferences and in groups, when conversation is polite and skin-deep, but it requires careful concentration and a lot of smoke and mirrors. Inside, it feels like I’m translating from Turkish to Cantonese without knowing either language. Every time this is said, that is the appropriate reply, though I struggle to understand why. I just possess a translation book, and recite what is expected. Stimulus and response. This skill was only recently acquired.

Looking at the point between people’s eyes makes it appear as though I am making direct eye contact during conversations. Certain observations (“you look tired”) are apparently less well-received than others (“you look excited”), and I’ve mostly learned which are which.

After a long day keeping up this appearance, especially at conferences, I find a nice dark room and stay there. Sharing conference hotel rooms with fellow academics is never an option. Some strategies I figured out myself; others, like the eye contact trick, I built over extended discussions with an old girlfriend after she handed me a severely-highlighted copy of The Partner’s Guide to Asperger Syndrome.

ADHD and Autism Spectrum Disorder are highly co-morbid, and I have been diagnosed with either or both by several independent professionals in the last twenty years. Working is hard, and often takes at least twice as much time for me as it does for the peers with whom I have discussed this. When interested in something, I lose myself entirely in it for hours on end, but a single break in concentration will leave me scrambling. It may take hours or days to return to a task, if I do at all. My best work is done in marathon, and work that takes longer than a few days may never get finished, or may drop in quality precipitously. Keeping the internet disconnected and my phone off during regular periods every day, locked in my windowless office, helps keep distractions at bay. But, I have yet to discover a good strategy to manage long projects. A career in the book-driven humanities may have been a poor choice.

Paying bills on time, keeping schedules, and replying to emails are among the most stressful tasks in my life. When I don’t adequately handle all of these mundane tasks, it sets in motion a cycle of horror that paralyzes my ability to get anything done, until I eventually file for task bankruptcy and inevitably disappoint colleagues, friends, or creditors to whom action is owed. Poor time management and stress-cycles lead me to over-promise and under-deliver. On the bright side, I recently received help in strategies to improve that, and they work. Sometimes.

Friendships, surprisingly, are easy to maintain but difficult to nourish. My friends consider me trustworthy and willing to help (if not necessarily always dependable), but I lose track of friends or family who aren’t geographically close. Deeper emotional relationships are rare or, for swaths of my life, non-existent. I get no fits of anger or depression or elation or excitement. Indeed, my friends and family remark how impossible it is to see if I like a gift they’ve given me.

People occasionally describe my actions as offensive, rude, or short, and I get frustrated trying to understand exactly why what I’m doing fits into those categories. Apparently, early in grad school, I had a bit of a reputation for asking obnoxious questions in lectures. But I don’t like upsetting people, and actively (maybe successfully?) try to curb these traits when they are pointed out.

Thankfully, academic life allows me the freedom to lock myself in a room and focus on a task. Using work as a coping mechanism for social difficulties may be unhealthy, but hey, at least I found a career that rewards my peculiarities.

My life is pretty great. I have good friends, a loving family, and hobbies that challenge me. As long as I maintain the proper controlled environment, my fixations and obsessions are a perfect complement to an academic career, especially in a culture that (unfortunately) rewards workaholism. The same tenacity often compensates for difficulties in navigating romantic relationships, of which I’ve had a few incredibly fulfilling and valuable ones over my life thus-far.

Unfortunately, my experience on the autism spectrum is not shared by all academics. Some have enough difficulty managing the social world that they end up alienating colleagues who are on their tenure committees, to disastrous effect. From private conversations, it seems autistic women suffer more from this than men, as they are expected to perform more service work and to be more social. Supportive administrators can be vital in these situations, and autism-spectrum academics may want to negotiate accommodations for themselves as part of their hiring process.

Despite some frustrations, I have found my atypical way of interacting with the world to be a feature, not a bug. My atypicality presents as what used to be called Asperger Syndrome, and it is easier for me to interact with the world, and easier for the world to interact with me, than many other autistic individuals. That said, whether or not my friends and colleagues notice, I still struggle with many aspects common to those diagnosed on the autism spectrum: social-emotional difficulties, alexithymia, intensity of focus, hypersensitivity, system-oriented thinking, etc.

Relationships or friendships with someone on the spectrum can be tough, even with someone who doesn’t outwardly present common characteristics, like me. An old partner once vented her frustrations that she couldn’t turn to her friends for advice, because: “everyone just said Scott is so normal and I was thinking [no], he’s just very very good at passing [as socially aware].” Like many who grow up non-neurotypical, I learned a complex set of coping strategies to help me fit in and succeed in a neurotypical world. To concentrate on work, I create an office cave to shut out the world. I use a complicated set of journals, calendars, and apps to keep me on task and ensure I pay bills on time. To stay attentive, I sit at the front of a lecture hall—it even works, sometimes. Some ADHD symptoms are managed pharmacologically.

These strategies give me the 80% push I need to be a functioning member of society, to become someone who can sustain relationships, not get kicked out of his house for forgetting rent, and can almost finish a PhD. Almost. It’s not quite enough to prevent me from a dozen incompletes on my transcripts, but I make do. A host of unrealistically patient and caring friends, family, and colleagues helps. (If you’re someone to whom I still owe work, but am too scared to reply to because of how delinquent I am, thanks for understanding! waves and runs away). Caring allies help. A lot.

My life so far has been a series of successes and confusions. Not unlike anybody else’s life, I suppose. I occupy my own corner of weirdness, which is itself unique enough, but everyone has their own corner. I doubt my writing this will help anyone understand themselves any better, but hopefully it will help fellow academics feel a bit safer in their own weirdness. And if this essay helps our neurotypical colleagues be a bit more understanding of our struggles, and better-informed as allies, all the better.

Notes:

  1. The original article, Stigma, was written for the Conditionally Accepted column of Inside Higher Ed. Jeana Jorgensen, Eric Grollman and Sarah Bray provided invaluable feedback, and I wouldn’t have written it without them. They invited me to write this second article for Inside Higher Ed as well, which was my original intent. I wound up posting it on my blog instead because their posting schedule didn’t quite align with my writing schedule. This shouldn’t be counted as a negative reflection on the process of publishing with that fine establishment.
  2. Let me be clear: I know very little about autism, beyond that I have been diagnosed with it. I’m still learning a lot. This post is about me. Knowing other people face similar struggles has been profoundly helpful, regardless of what causes those struggles.

“Digital History” Can Never Be New

If you claim computational approaches to history (“digital history”) lets historians ask new types of questions, or that they offer new historical approaches to answering or exploring old questions, you are wrong. You’re not actually wrong, but you are institutionally wrong, which is maybe worse.

This is a problem, because rhetoric from practitioners (including me) is that we can bring some “new” to the table, and when we don’t, we’re called out for not doing so. The exchange might (but probably won’t) go like this:

Digital Historian: And this graph explains how velociraptors were of utmost importance to Victorian sensibilities.

Historian in Audience: But how is this telling us anything we haven’t already heard before? Didn’t John Hammond already make the same claim?

DH: That’s true, he did. One thing the graph shows, though, is that velicoraptors in general tend to play much more unimportant roles across hundreds of years, which lends support to the Victorian thesis.

HiA: Yes, but the generalized argument doesn’t account for cultural differences across those times, so doesn’t meaningfully contribute to this (or any other) historical conversation.


New Questions

History (like any discipline) is made of people, and those people have Ideas about what does or doesn’t count as history (well, historiography, but that’s a long word so let’s ignore it). If you ask a new type of question or use a new approach, that new thing probably doesn’t fit historians’ Ideas about proper history.

Take culturomics. They make claims like this:

The age of peak celebrity has been consistent over time: about 75 years after birth. But the other parameters have been changing. Fame comes sooner and rises faster. Between the early 19th century and the mid-20th century, the age of initial celebrity declined from 43 to 29 years, and the doubling time fell from 8.1 to 3.3 years.

Historians saw those claims and asked “so what”? It’s not interesting or relevant according to the things historians usually consider interesting or relevant, and it’s problematic in ways historians find things problematic. For example, it ignores cultural differences, does not speak to actual human experiences, and has nothing of use to say about a particular historical moment.

It’s true. Culturomics-style questions do not fit well within a humanities paradigm (incommensurable, anyone?). By the standard measuring stick of what makes a good history project, culturomics does not measure up. A new type of question requires a new measuring stick; in this case, I think a good one for culturomics-style approaches is the extent to which they bridge individual experiences with large-scale social phenomena, or how well they are able to reconcile statistical social regularities with free or contingent choice.

The point, though, is a culturomics presentation would fit few of the boxes expected at a history conference, and so would be considered a failure. Rightly so, too—it’s a bad history presentation. But what culturomics is successfully doing is asking new types of questions, whether or not historians find them legitimate or interesting. Is it good culturomics?

To put too fine a point on it, since history is often a question-driven discipline, new types of questions that are too different from previous types are no longer legitimately within the discipline of history, even if they are intrinsically about human history and do not fit in any other discipline.

What’s more, new types of questions may appear simplistic by historian’s standards, because they fail at fulfilling even the most basic criteria usually measuring historical worth. It’s worth keeping in mind that, to most of the rest of the world, our historical work often fails at meeting their criteria for worth.

New Approaches

New approaches to old questions share a similar fate, but for different reasons. That is, if they are novel, they are not interesting, and if they are interesting, they are not novel.

Traditional historical questions are, let’s face it, not particularly new. Tautologically. Some old questions in my field are: what role did now-silent voices play in constructing knowledge-making instruments in 17th century astronomy? How did scholarship become institutionalized in the 18th century? Why was Isaac Newton so annoying?

My own research is an attempt to provide a broader view of those topics (at least, the first two) using computational means. Since my topical interest has a rich tradition among historians, it’s unlikely any of my historically-focused claims (for example, that scholarly institutions were built to replace the really complicated and precarious role people played in coordinating social networks) will be without precedent.

After decades, or even centuries, of historical work in this area, there will always be examples of historians already having made my claims. My contribution is the bolstering of a particular viewpoint, the expansion of its applicability, the reframing of a discussion. Ultimately, maybe, I convince the world that certain social network conditions play an important role in allowing scholarly activity to be much more successful at its intended goals. My contribution is not, however, a claim that is wholly without precedent.

But this is a problem, since DH rhetoric, even by practitioners, can understandably lead people to expect such novelty. Historians in particular are very good at fitting old patterns to new evidence. It’s what we’re trained to do.

Any historical claim (to an acceptable question within the historical paradigm) can easily be countered with “but we already knew that”. Either the question’s been around long enough that every plausible claim has been covered, or the new evidence or theory is similar enough to something pre-existing that it can be taken as precedent.

The most masterful recent discussion of this topic was Matthew Lincoln’s Confabulation in the humanities, where he shows how easy it is to make up evidence and get historians to agree that they already knew it was true.

To put too fine a point on it, new approaches to old historical questions are destined to produce results which conform to old approaches; or if they don’t, it’s easy enough to stretch the old & new theories together until they fit. New approaches to old questions will fail at producing completely surprising results; this is a bad standard for historical projects. If a novel methodology were to create truly unrecognizable results, it is unlikely those results would be recognized as “good history” within the current paradigm. That is, historians would struggle to care.

What Is This Beast?

What is this beast we call digital history? Boundary-drawing is a tried-and-true tradition in the humanities, digital or otherwise. It’s theoretically kind of stupid but practically incredibly important, since funding decisions, tenure cases, and similar career-altering forces are at play. If digital history is a type of history, it’s fundable as such, tenurable as such; if it isn’t, it ain’t. What’s more, if what culturomics researchers are doing are also history, their already-well-funded machine can start taking slices of the sad NEH pie.

Artist's rendition of sad NEH pie. [via]
Artist’s rendition of sad NEH pie. [via]
So “what counts?” is unfortunately important to answer.

This discussion around what is “legitimate history research” is really important, but I’d like to table it for now, because it’s so often conflated with the discussion of what is “legitimate research” sans history. The former question easily overshadows the latter, since academics are mostly just schlubs trying to make a living.

For the last century or so, history and philosophy of science have been smooshed together in departments and conferences. It’s caused a lot of concern. Does history of science need philosophy of science? Does philosophy of science need history of science? What does it mean to combine the two? Is what comes out of the middle even useful?

Weirdly, the question sometimes comes down to “does history and philosophy of science even exist?”. It’s weird because people identify with that combined title, so I published a citation analysis in Erkenntnis a few years back that basically showed that, indeed, there is an area between the two communities, and indeed those people describe themselves as doing HPS, whatever that means to them.

Look! Right in the middle there, it's history and philosophy of science.
Look! Right in the middle there, it’s history and philosophy of science.

I bring this up because digital history, as many of us practice it, leaves us floating somewhere between public engagement, social science, and history. Culturomics occupies a similar interstitial space, though inching closer to social physics and complex systems.

From this vantage point, we have a couple of options. We can say digital history is just history from a slightly different angle, and try to be evaluated by standard historical measuring sticks—which would make our work easily criticized as not particularly novel. Or we can say digital history is something new, occupying that in-between space—which could render the work unrecognizable to our usual communities.

The either/or proposition is, of course, ludicrous. The best work being done now skirts the line, offering something just novel enough to be surprising, but not so out of traditional historical bounds as to be grouped with culturomics. But I think we need to more deliberate and organized in this practice, lest we want to be like History and Philosophy of Science, still dealing with basic questions of legitimacy fifty years down the line.

In the short term, this probably means trying not just to avoid the rhetoric of newness, but to actively curtail it. In the long term, it may mean allying with like-minded historians, social scientists, statistical physicists, and complexity scientists to build a new framework of legitimacy that recognizes the forms of knowledge we produce which don’t always align with historiographic standards. As Cassidy Sugimoto and I recently wrote, this often comes with journals, societies, and disciplinary realignment.

The least we can do is steer away from a novelty rhetoric, since what is novel often isn’t history, and what is history often isn’t novel.


“Branding” – An Addendum

After writing this post, I read Amardeep Singh’s call to, among other things, avoid branding:

Here’s a way of thinking that might get us past this muddle (and I think I agree with the authors that the hype around DH is a mistake): let’s stop branding our scholarship. We don’t need Next Big Things and we don’t need Academic Superstars, whether they are DH Superstars or Theory Superstars. What we do need is to find more democratic and inclusive ways of thinking about the value of scholarship and scholarly communities.

This is relevant here, and good, but tough to reconcile with the earlier post. In an ideal world, without disciplinary brandings, we can all try to be welcoming of works on their own merits, without relying our preconceived disciplinary criteria. In the present condition, though, it’s tough to see such an environment forming. In that context, maybe a unified digital history “brand” is the best way to stay afloat. This would build barriers against whatever new thing comes along next, though, so it’s a tough question.

The Turing Point

Below is some crazy, uninformed ramblings about the least-complex possible way to trick someone into thinking a computer is a human, for the purpose of history research. I’d love some genuine AI/Machine Intelligence researchers to point me to the actual discussions on the subject. These aren’t original thoughts; they spring from countless sci-fi novels and AI research from the ’70s-’90s. Humanists beware: this is super sci-fi speculative, but maybe an interesting thought experiment.


If someone’s chatting with a computer, but doesn’t realize her conversation partner isn’t human, that computer passes the Turing Test. Unrelatedly, if a robot or piece of art is just close enough to reality to be creepy, but not close enough to be convincingly real, it lies in the Uncanny ValleyI argue there is a useful concept in the simplest possible computer which is still convincingly human, and that computer will be at the Turing Point. 1 

By Smurrayinchester - self-made, based on image by Masahiro Mori and Karl MacDorman at http://www.androidscience.com/theuncannyvalley/proceedings2005/uncannyvalley.html, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2041097
By Smurrayinchester – self-made, based on image by Masahiro Mori and Karl MacDorman, CC BY-SA 3.0

Forgive my twisting Turing Tests and Uncanny Valleys away from their normal use, for the sake of outlining the Turing Point concept:

  • A human simulacrum is a simulation of a human, or some aspect of a human, in some medium, which is designed to be as-close-as-possible to that which is being modeled, within the scope of that medium.
  • A Turing Test winner is any human simulacrum which humans consistently mistake for the real thing.
  • An occupant of the Uncanny Valley is any human simulacrum which humans consistently doubt as representing a “real” human.
  • Between the Uncanny Valley and Turing Test winners lies the Turing Point, occupied by the least-sophisticated human simulacrum that can still consistently pass as human in a given medium. The Turing Point is a hyperplane in a hypercube, such that there are many points of entry for the simulacrum to “phase-transition” from uncanny to convincing.

Extending the Turing Test

The classic Turing Test scenario is a text-only chatbot which must, in free conversation, be convincing enough for a human to think it is speaking with another human. A piece of software named Eugene Goostman sort-of passed this test in 2014, convincing a third of judges it was a 13-year-old Ukrainian boy.

There are many possible modes in which a computer can act convincingly human. It is easier to make a convincing simulacrum of a 13-year-old non-native English speaker who is confined to text messages than to make a convincing college professor, for example. Thus the former has a lower Turing Point than the latter.

Playing with the constraints of the medium will also affect the Turing Point threshold. The Turing Point for a flesh-covered robot is incredibly difficult to surpass, since so many little details (movement, design, voice quality, etc.) may place it into the Uncanny Valley. A piece of software posing as a Twitter user, however, would have a significantly easier time convincing fellow users it is human.

The Turing Point, then, is flexible to the medium in which the simulacrum intends to deceive, and the sort of human it simulates.

From Type to Token

Convincing the world a simulacrum is any old human is different than convincing the world it is some specific human. This is the token/type distinction; convincingly simulating a specific person (token) is much more difficult than convincingly simulating any old person (type).

Simulations of specific people are all over the place, even if they don’t intend to deceive. Several Twitter-bots exist as simulacra of Donald Trump, reading his tweets and creating new ones in a similar style. Perhaps imitating Poe’s Law, certain people’s styles, or certain types of media (e.g. Twitter), may provide such a low Turing Point that it is genuinely difficult to distinguish humans from machines.

Put differently, the way some Turing Tests may be designed, humans could easily lose.

It’ll be useful to make up and define two terms here. I imagine the concepts already exist, but couldn’t find them, so please comment if they do so I can use less stupid words:

  • type-bot is a machine designed to be represent something at the type-level. For example, a bot that can be mistaken for some random human, but not some specific human.
  • token-bot is a machine designed to represent something at the token-level. For example, a bot that can be mistaken for Donald Trump.

Replaying History

Using traces to recreate historical figures (or at least things they could have done) as token-bots is not uncommon. The most recent high-profile example of this is a project to create a new Rembrandt painting in the original style. Shawn Graham and I wrote an article on using simulations to create new plausible histories, among many other examples old and new.

This all got me thinking, if we reach the Turing Point for some social media personalities (that is, it is difficult to distinguish between their social media presence, and a simulacrum of it), what’s to say we can’t reach it for an entire social media ecosystem? Can we take a snapshot of Twitter and project it several seconds/minutes/hours/days into the future, a bit like a meteorological model?

A few questions and obvious problems:

  • Much of Twitter’s dynamics are dependent upon exogenous forces: memes from other media, real world events, etc. Thus, no projection of Twitter alone would ever look like the real thing. One can, however, potentially use such a simulation to predict how certain types of events might affect the system.
  • This is way overkill, and impossibly computationally complex at this scale. You can simulate the dynamics of Twitter without simulating every individual user, because people on average act pretty systematically. That said, for the humanities-inclined, we may gain more insight from the ground-level of the system (individual agents) than macroscopic properties.
  • This is key. Would a set of plausibly-duplicate Twitter personalities on aggregate create a dynamic system that matches Twitter as an aggregate system? That is, just because the algorithms pass the Turing Test, because humans believe them to be humans, does that necessarily imply the algorithms have enough fidelity to accurately recreate the dynamics of a large scale social network? Or will small unnoticeable differences between the simulacrum and the original accrue atop each other, such that in aggregate they no longer act like a real social network?

The last point is I think a theoretically and methodologically fertile one for people working in DH, AI, and Cognitive Science: whether reducing human-appreciable traits between machines and people is sufficient to simulate aggregate social behavior, or whether human-appreciability (i.e., Turing Test) is a strict enough criteria for making accurate predictions about societies.

These points aside, if we ever do manage to simulate specific people (even in a very limited scope) as token-bots based on the traces they leave, it opens up interesting pedagogical and research opportunities for historians. Scott Enderle tweeted a great metaphor for this:

Imagine, as a student, being able to have a plausible discussion with Marie Curie, or sitting in an Enlightenment-era salon. 2 Or imagine, as a researcher (if individual Turing Point machines do aggregate well), being able to do well-grounded counterfactual history that works at the token level rather than at the type level.

Turing Point Simulations

Bringing this slightly back into the realm of the sane, the interesting thing here is the interplay between appreciability (a person’s ability to appreciate enough difference to notice something wrong with a simulacrum) and fidelity.

We can specifically design simulation conditions with incredibly low-threshold Turing Points, even for token-bots. That is to say, we can create a condition where the interactions are simple enough to make a bot that acts indistinguishably from the specific human it is simulating.

At the most extreme end, this is obviously pointless. If our system is one in which a person can only answer “yes” or “no” to pre-selected preference questions (“Do you like ice-cream?”), making a bot to simulate that person convincingly would be trivial.

Putting that aside (lest we get into questions of the Turing Point of a set of Turing Points), we can potentially design reasonably simplistic test scenarios that would allow for an easy-to-reach Turing Point while still being historiographically or sociologically useful. It’s sort of a minimization problem in topological optimizations. Such a goal would limit the burden of the simulation while maximizing the potential research benefit (but only if, as mentioned before, the difference between true fidelity and the ability to win a token-bot Turing Test is small enough to allow for generalization).

In short, the concept of a Turing Point can help us conceptualize and build token-simulacra that are useful for research or teaching. It helps us ask the question: what’s the least-complex-but-still-useful token-simulacra? It’s also kind-of maybe sort-of like Kolmogorov complexity for human appreciability of other humans: that is, the simplest possible representation of a human that is convincing to other humans.

I’ll end by saying, once again, I realize how insane this sounds, and how far-off. And also how much an interloper I am to this space, having never so much as designed a bot. Still, as Bill Hart-Davidson wrote,

the possibility seems more plausible than ever, even if not soon-to-come. I’m not even sure why I posted this on the Irregular, but it seemed like it’d be relevant enough to some regular readers’ interests to be worth spilling some ink.

Notes:

  1. The name itself is maybe too on-the-nose, being a pun for turning point and thus connected to the rhetoric of singularity, but ¯\_(ツ)_/¯
  2. Yes yes I know, this is SecondLife all over again, but hopefully much more useful.

Summary: Martin & Runyon’s “Digital Humanities, Digital Hegemony”

Today’s post just summarizes an article recently shared with me, as an attempt to boost the signal:

Those following along at home know I’ve been exploring how digital humanities infrastructure reinforces pre-existing cultural biases, most recently with Nickoal Eichmann & Jeana Jorgensen looking at DH Conferences, 2000-2015.

One limitation of our study is we know very little about the content of conference presentations or the racial identities of authors, which means we can’t assess bias in those directions. John D. Martin III & Carolyn Runyon recently published preliminary results more thoroughly addressing race & gender in DH from a funding perspective, and focused on the content of grants:

Martin, John D., III, and Carolyn Runyon. “Digital Humanities, Digital Hegemony: Exploring Funding Practices and Unequal Access in the Digital Humanities.” SIGCAS Computers and Society. 46, no. 1 (March 2016): 20–26. doi:10.1145/2908216.2908219.

By hand-categorizing 656 DH-oriented NEH grants from 2007-2016, totaling $225 million, Martin & Runyon found 110 projects whose focus involved gender or individuals of a certain gender, and 228 which focused on race/ethnicity or individuals identifiable with particular races/ethnicities.

From the article
From the article

Major findings include:

  • Twice as much money goes to studying men than to women.
  • On average, individual projects about women are better-funded.
  • The top three race/ethnicity categories by funding amount are White ($21 million), Asian ($7 million), and Black ($6.5 million).
  •  White men are discussed as individuals, and women and non-white people are focused on as groups.

Their results fit well with what I and others have found, which is that DH propagates the same cultural bias found elsewhere within and outside academia.

A next step, vital to this project, is to find equivalent metrics for other disciplines and data sources. Until we get a good baseline, we won’t actually know if our interventions are improving the situation. It’s all well and good to say “things are bad”, but until we know the compared-to-what, we won’t have a reliable way of testing what works and what doesn’t.

Who sits in the 41st chair?

tl;dr Rich-get-richer academic prestige in a scarce job market makes meritocracy impossible. Why some things get popular and others don’t. Also agent-based simulations.

Slightly longer tl;dr This post is about why academia isn’t a meritocracy, at no intentional fault of those in power who try to make it one. None of presented ideas are novel on their own, but I do intend this as a novel conceptual contribution in its connection of disparate threads. Especially, I suggest the predictability of research success in a scarce academic economy as a theoretical framework for exploring successes and failures in the history of science.

But mostly I just beat a “musical chairs” metaphor to death.

Positive Feedback

To the victor go the spoils, and to the spoiled go the victories. Think about it: the Yankees; Alexander the Great; Stanford University. Why do the Yankees have twice as many World Series appearances as their nearest competitors, how was Alex’s empire so fucking vast, and why does Stanford get all the cool grants?

The rich get richer. Enough World Series victories, and the Yankees get the reputation and funding to entice the best players. Ol’ Allie-G inherited an amazing army, was taught by Aristotle, and pretty much every place he conquered increased his military’s numbers. Stanford’s known for amazing tech innovation, so they get the funding, which means they can afford even more innovation, which means even more people think they’re worthy of funding, and so on down the line until Stanford and its neighbors (Google, Apple, etc.) destroy the local real estate market and then accidentally blow up the world.

Alexander's Empire [via]
Alexander’s Empire [via]
Okay, maybe I exaggerated that last bit.

Point is, power begets power. Scientists call this a positive feedback loop: when a thing’s size is exactly what makes it grow larger.

You’ve heard it firsthand when a microphoned singer walks too close to her speaker. First the mic picks up what’s already coming out of the speaker. The mic, doings its job, sends what it hears to an amplifier, sending an even louder version to the very same speaker. The speaker replays a louder version of what it just produced, which is once again received by the microphone, until sound feeds back onto itself enough times to produce the ear-shattering squeal fans of live music have come to dread. This is a positive feedback loop.

Feedback loop. [via]
Feedback loop. [via]
Positive feedback loops are everywhere. They’re why the universe counts logarithmically rather than linearly, or why income inequality is so common in free market economies. Left to their own devices, the rich tend to get richer, since it’s easier to make money when you’ve already got some.

Science and academia are equally susceptible to positive feedback loops. Top scientists, the most well-funded research institutes, and world-famous research all got to where they are, in part, because of something called the Matthew Effect.

Matthew Effect

The Matthew Effect isn’t the reality TV show it sounds like.

For unto every one that hath shall be given, and he shall have abundance: but from him that hath not shall be taken even that which he hath. —Matthew 25:29, King James Bible.

It’s the Biblical idea that the rich get richer, and it’s become a popular party trick among sociologists (yes, sociologists go to parties) describing how society works. In academia, the phrase is brought up alongside evidence that shows previous grant-recipients are more likely to receive new grants than their peers, and the more money a researcher has been awarded, the more they’re likely to get going forward.

The Matthew Effect is also employed metaphorically, when it comes to citations. He who gets some citations will accrue more; she who has the most citations will accrue them exponentially faster. There are many correct explanations, but the simplest one will do here: 

If Susan’s article on the danger of velociraptors is cited by 15 other articles, I am more likely to find it and cite her than another article on velociraptors containing the same information, that has never been citedThat’s because when I’m reading research, I look at who’s being cited. The more Susan is cited, the more likely I’ll eventually come across her article and cite it myself, which in turn increases the likelihood that much more that someone else will find her article through my own citations. Continue ad nauseam.

Some of you are thinking this is stupid. Maybe it’s trivially correct, but missing the bigger picture: quality. What if Susan’s velociraptor research is simply better than the competing research, and that’s why it’s getting cited more?

Yes, that’s also an issue. Noticeably awful research simply won’t get much traction. 1 Let’s disqualify it from the citation game. The point is there is lots of great research out there, waiting to be read and built upon, and its quality isn’t the sole predictor of its eventual citation success.

In fact, quality is a mostly-necessary but completely insufficient indicator of research success. Superstar popularity of research depends much more on the citation effects I mentioned above – more citations begets even more. Previous success is the best predictor of future success, mostly independent of the quality of research being shared.

Example of positive feedback loops pushing some articles to citation stardom.
Example of positive feedback loops pushing some articles to citation stardom. [via]
This is all pretty hand-wavy. How do we know success is more important than quality in predicting success? Uh, basically because of Napster.

Popular Music

If VH1 were to produce a retrospective on the first decade of the 21st century, perhaps its two biggest subjects would be illegal music sharing and VH1’s I Love the 19xx… TV series. Napster came and went, followed by LimeWire, eDonkey2000, AudioGalaxy, and other services sued by Metallica. Well-known early internet memes like Hamster Dance and All Your Base Are Belong To Us spread through the web like socially transmitted diseases, and researchers found this the perfect opportunity to explore how popularity worked. Experimentally.

In 2006, a group of Columbia University social scientists designed a clever experiment to test why some songs became popular and others did not, relying on the public interest in online music sharing. They created a music downloading site which gathered 14,341 users, each one to become a participant in their social experiment.

The cleverness arose out of their experimental design, which allowed them to get past the pesky problem of history only ever happening once. It’s usually hard to learn why something became popular, because you don’t know what aspects of its popularity were simply random chance, and what aspects were genuine quality. If you could, say, just rerun the 1960s, changing a few small aspects here or there, would the Beatles still have been as successful? We can’t know, because the 1960s are pretty much stuck having happened as they did, and there’s not much we can do to change it. 2

But this music-sharing site could rerun history—or at least, it could run a few histories simultaneously. When they signed up, each of the site’s 14,341 users were randomly sorted into different groups, and their group number determined how they were presented music. The musical variety was intentionally obscure, so users wouldn’t have heard the bands before.

A user from the first group, upon logging in, would be shown songs in random order, and were given the option to listen to a song, rate it 1-5, and download it. Users from group #2, instead, were shown the songs ranked in order of their popularity among other members of group #2. Group #3 users were shown a similar rank-order of popular songs, but this time determined by the song’s popularity within group #3. So too for groups #4-#9. Every user could listen to, rate, and download music.

Essentially, the researchers put the participants into 9 different self-contained petri dishes, and waited to see which music would become most popular in each. Ranking and download popularity from group #1 was their control group, in that members judged music based on their quality without having access to social influence. Members of groups #2-#9 could be influenced by what music was popular with their peers within the group. The same songs circulated in each petri dish, and each petri dish presented its own version of history.

Music sharing site from Columbia study.
Music sharing site from Columbia study.

No superstar songs emerged out of the control group. Positive feedback loops weren’t built into the system, since popularity couldn’t beget more popularity if nobody saw what their peers were listening to. The other 8 musical petri dishes told a different story, however. Superstars emerged in each, but each group’s population of popular music was very different. A song’s popularity in each group was slightly related to its quality (as judged by ranking in the control group), but mostly it was social-influence-produced chaos. The authors put it this way:

In general, the “best” songs never do very badly, and the “worst” songs never do extremely well, but almost any other result is possible. —Salganik, Dodds, & Watts, 2006

These results became even more pronounced when the researchers increased the visibility of social popularity in the system. The rich got even richer still. A lot of it has to do with timing. In each group, the first few good songs to become popular are the ones that eventually do the best, simply by an accident of circumstance. The first few popular songs appear at the top of the list, for others to see, so they in-turn become even more popular, and so ad infinitum.  The authors go on:

experts fail to predict success not because they are incompetent judges or misinformed about the preferences of others, but because when individual decisions are subject to social influence, markets do not simply aggregate pre-existing individual preferences.

In short, quality is a necessary but insufficient criteria for ultimate success. Social influence, timing, randomness, and other non-qualitative features of music are what turn a good piece of music into an off-the-charts hit.

Wait what about science?

Compare this to what makes a “well-respected” scientist: it ain’t all citations and social popularity, but they play a huge role. And as I described above, simply out of exposure-fueled-propagation, the more citations someone accrues, the more citations they are likely to accrue, until we get a situation like the Yankees (40 world series appearances, versus 20 appearances by the Giants) on our hands. Superstars are born, who are miles beyond the majority of working researchers in terms of grants, awards, citations, etc. Social scientists call this preferential attachment.

Which is fine, I guess. Who cares if scientific popularity is so skewed as long as good research is happening? Even if we take the Columbia social music experiment at face-value, an exact analog for scientific success, we know that the most successful are always good scientists, and the least successful are always bad ones, so what does it matter if variability within the ranks of the successful is so detached from quality?

Except, as anyone studying their #OccupyWallstreet knows, it ain’t that simple in a scarce economy. When the rich get richer, that money’s gotta come from somewhere. Like everything else (cf. the law of conservation of mass), academia is a (mostly) zero-sum game, and to the victors go the spoils. To the losers? Meh.

So let’s talk scarcity.

The 41st Chair

The same guy who who introduced the concept of the Matthew Effect to scientific grants and citations, Robert K. Merton (…of Columbia University), also brought up “the 41st chair” in the same 1968 article.

Merton’s pretty great, so I’ll let him do the talking:

In science as in other institutional realms, a special problem in the workings of the reward system turns up when individuals or organizations take on the job of gauging and suitably rewarding lofty performance on behalf of a large community. Thus, that ultimate accolade in 20th-century science, the Nobel prize, is often assumed to mark off its recipients from all the other scientists of the time. Yet this assumption is at odds with the well-known fact that a good number of scientists who have not received the prize and will not receive it have contributed as much to the advancement of science as some of the recipients, or more.

This can be described as the phenomenon of “the 41st chair.” The derivation of this tag is clear enough. The French Academy, it will be remembered, decided early that only a cohort of 40 could qualify as members and so emerge as immortals. This limitation of numbers made inevitable, of course, the exclusion through the centuries of many talented individuals who have won their own immortality. The familiar list of occupants of this 41st chair includes Descartes, Pascal, Moliere, Bayle, Rousseau, Saint-Simon, Diderot, Stendahl, Flaubert, Zola, and Proust

[…]

But in greater part, the phenomenon of the 41st chair is an artifact of having a fixed number of places available at the summit of recognition. Moreover, when a particular generation is rich in achievements of a high order, it follows from the rule of fixed numbers that some men whose accomplishments rank as high as those actually given the award will be excluded from the honorific ranks. Indeed, their accomplishments sometimes far outrank those which, in a time of less creativity, proved
enough to qualify men for his high order of recognition.

The Nobel prize retains its luster because errors of the first kind—where scientific work of dubious or inferior worth has been mistakenly honored—are uncommonly few. Yet limitations of the second kind cannot be avoided. The small number of awards means that, particularly in times of great scientific advance, there will be many occupants of the 41st chair (and, since the terms governing the award of the prize do not provide for posthumous recognition, permanent occupants of that chair).

Basically, the French Academy allowed only 40 members (chairs) at a time. We can be reasonably certain those members were pretty great, but we can’t be sure that equally great—or greater—women existed who simply never got the opportunity to participate because none of the 40 members died in time.

These good-enough-to-be-members-but-weren’t were said to occupy the French Academy’s 41st chair, an inevitable outcome of a scarce economy (40 chairs) when the potential number benefactors of this economy far outnumber the goods available (40). The population occupying the 41st chair is huge, and growing, since the same number of chairs have existed since 1634, but the population of France has quadrupled in the intervening four centuries.

Returning to our question of “so what if rich-get-richer doesn’t stick the best people at the top, since at least we can assume the people at the top are all pretty good anyway?”, scarcity of chairs is the so-what.

Since faculty jobs are stagnating compared to adjunct work, yet new PhDs are being granted faster than new jobs become available, we are presented with the much-discussed crisis in higher education. Don’t worry, we’re told, academia is a meritocracy. With so few jobs, only the cream of the crop will get them. The best work will still be done, even in these hard times.

Recent Science PhD growth in the U.S. [via]
Recent Science PhD growth in the U.S. [via]
Unfortunately, as the Columbia social music study (among many other studies) showed, true meritocracies are impossible in complex social systems. Anyone who plays the academic game knows this already, and many are quick to point it out when they see people in much better jobs doing incredibly stupid things. What those who point out the falsity of meritocracy often get wrong, however, is intention: the idea that there is no meritocracy because those in power talk the meritocracy talk, but don’t then walk the walk. I’ll talk a bit later about how, even if everyone is above board in trying to push the best people forward, occupants of the 41st chair will still often wind up being more deserving than those sitting in chairs 1-40. But more on that later.

For now, let’s start building a metaphor that we’ll eventually over-extend well beyond its usefulness. Remember that kids’ game Musical Chairs, where everyone’s dancing around a bunch of chairs while the music is playing, but as soon as the music stops everyone’s got to find a chair and sit down? The catch, of course, is that there are fewer chairs than people, so someone always loses when the music stops.

The academic meritocracy works a bit like this. It is meritocratic, to a point: you can’t even play the game without proving some worth. The price of admission is a Ph.D. (which, granted, is more an endurance test than an intelligence test, but academic success ain’t all smarts, y’know?), a research area at least a few people find interesting and believe you’d be able to do good work in it, etc. It’s a pretty low meritocratic bar, since it described 50,000 people who graduated in the U.S. in 2008 alone, but it’s a bar nonetheless. And it’s your competition in Academic Musical Chairs.

Academic Musical Chairs

Time to invent a game! It’s called Academic Musical Chairs, the game where everything’s made up and the points don’t matter. It’s like Regular Musical Chairs, but more complicated (see Fig. 1). Also the game is fixed.

Figure 1: Academic Musical Chairs
Figure 1: Academic Musical Chairs

See those 40 chairs in the middle green zone? People sitting in them are the winners. Once they’re seated they have what we call in the game “tenure”, and they don’t get up until they die or write something controversial on twitter. Everyone bustling around them, the active players, are vying for seats while they wait for someone to die; they occupy the yellow zone we call “the 41st chair”. Those beyond that, in the red zone, can’t yet (or may never) afford the price of game admission; they don’t have a Ph.D., they already said something controversial on Twitter, etc. The unwashed masses, you know?

As the music plays, everyone in the 41st chair is walking around in a circle waiting for someone to die and the music to stop. When that happens, everyone rushes to the empty seat. A few invariably reach it simultaneously, until one out-muscles the others and sits down. The sitting winner gets tenure. The music starts again, and the line continues to orbit the circle.

If a player spends too long orbiting in the 41st chair, he is forced to resign. If a player runs out of money while orbiting, she is forced to resign. Other factors may force a player to resign, but they will never appear in the rulebook and will always be a surprise.

Now, some players are more talented than others, whether naturally or through intense training. The game calls this “academic merit”, but it translates here to increased speed and strength, which helps some players reach the empty chair when the music stops, even if they’re a bit further away. The strength certainly helps when competing with others who reach the chair at the same time.

A careful look at Figure 1 will reveal one other way players might increase their chances of success when the music stops. The 41st chair has certain internal shells, or rings, which act a bit like that fake model of an atom everyone learned in high-school chemistry. Players, of course, are the electrons.

Electron shells. [via]
Electron shells. [via]
You may remember that the further out the shell, the more electrons can occupy it(-ish): the first shell holds 2 electrons, the second holds 8; third holds 18; fourth holds 32; and so on. The same holds true for Academic Musical Chairs: the coveted interior ring only fits a handful of players; the second ring fits an order of magnitude more; the third ring an order of magnitude more than that, and so on.

Getting closer to the center isn’t easy, and it has very little to do with your “academic rigor”! Also, of course, the closer you are to the center, the easier it is to reach either the chair, or the next level (remember positive feedback loops?). Contrariwise, the further you are from the center, the less chance you have of ever reaching the core.

Many factors affect whether a player can proceed to the next ring while the music plays, and some factors actively count against a player. Old age and being a woman, for example, take away 1 point. Getting published or cited adds points, as does already being friends with someone sitting in a chair (the details of how many points each adds can be found in your rulebook). Obviously the closer you are to the center, the easier you can make friends with people in the green core, which will contribute to your score even further. Once your score is high enough, you proceed to the next-closest shell.

Hooray, someone died! Let’s watch what happens.

The music stops. The people in the innermost ring who have the luckiest timing (thus are closest to the empty chair) scramble for it, and a few even reach it. Some very well-timed players from the 2nd & 3rd shells also reach it, because their “academic merit” has lent them speed and strength to reach past their position. A struggle ensues. Miraculously, a pregnant black woman sits down (this almost never happens), though not without some bodily harm, and the music begins again.

Oh, and new shells keep getting tacked on as more players can afford the cost of admission to the yellow zone, though the green core remains the same size.

Bizarrely, this is far from the first game of this nature. A Spanish boardgame from 1587 called the Courtly Philosophy had players move figures around a board, inching closer to living a luxurious life in the shadow of a rich patron. Random chance ruled their progression—a role of the dice—and occasionally they’d reach a tile that said things like: “Your patron dies, go back 5 squares”.

The courtier's philosophy. [via]
The courtier’s philosophy. [via]
But I digress. Let’s temporarily table the scarcity/41st-chair discussion and get back to the Matthew Effect.

The View From Inside

A friend recently came to me, excited but nervous about how well they were being treated by their department at the expense of their fellow students. “Is this what the Matthew Effect feels like?” they asked. Their question is the reason I’m writing this post, because I spent the next 24 hours scratching my head over “what does the Matthew Effect feel like?”.

I don’t know if anyone’s looked at the psychological effects of the Matthew Effect (if you do, please comment?), but my guess is it encompasses two feelings: 1) impostor syndrome, and 2) hard work finally paying off.

Since almost anyone who reaps the benefits of the Matthew Effect in academia will be an intelligent, hard-working academic, a windfall of accruing success should feel like finally reaping the benefits one deserves. You probably realize that luck played a part, and that many of your harder-working, smarter friends have been equally unlucky, but there’s no doubt in your mind that, at least, your hard work is finally paying off and the academic community is beginning to recognize that fact. No matter how unfair it is that your great colleagues aren’t seeing the same success.

But here’s the thing. You know how in physics, gravity and acceleration feel equivalent? How, if you’re in a windowless box, you wouldn’t be able to tell the difference between being stationary on Earth, or being pulled by a spaceship at 9.8 m/s2 through deep space? Success from merit or from Matthew Effect probably acts similarly, such that it’s impossible to tell one from the other from the inside.

Gravity vs. Acceleration. [via]
Gravity vs. Acceleration. [via]
Incidentally, that’s why the last advice you ever want to take is someone telling you how to succeed from their own experience.

Success

Since we’ve seen explosive success requires but doesn’t rely on skill, quality, or intent, the most successful people are not necessarily in the best position to understand the reason for their own rise. Their strategies may have paid off, but so did timing, social network effects, and positive feedback loops. The question you should be asking is, why didn’t other people with the same strategies also succeed?

Keep this especially in mind if you’re a student, and your tenured-professor advised you to seek an academic career. They may believe that giving you their strategies for success will help you succeed, when really they’re just giving you one of 50,000 admission tickets to Academic Musical Chairs.

Building a Meritocracy

I’m teetering well-past the edge of speculation here, but I assume the communities of entrenched academics encouraging undergraduates into a research career are the same communities assuming a meritocracy is at play, and are doing everything they can in hiring and tenure review to ensure a meritocratic playing field.

But even if gender bias did not exist, even if everyone responsible for decision-making genuinely wanted a meritocracy, even if the game weren’t rigged at many levels, the economy of scarcity (41st chair) combined with the Matthew Effect would ensure a true meritocracy would be impossible. There are only so many jobs, and hiring committees need to choose some selection criteria; those selection criteria will be subject to scarcity and rich-get-richer effects.

I won’t prove that point here, because original research is beyond the scope of this blog post, but I have a good idea of how to do it. In fact, after I finish writing this, I probably will go do just that. Instead, let me present very similar research, and explain how that method can be used to answer this question.

We want an answer to the question of whether positive feedback loops and a scarce economy are sufficient to prevent the possibility of a meritocracy. In 1971, Tom Schelling asked an unrelated question which he answered using a very relevant method: can racial segregation manifest in a community whose every actor is intent on not living a segregated life? Spoiler alert: yes.

He answered this question using by simulating an artificial world—similar in spirit to the Columbia social music experiment, except for using real participants, he experimented on very simple rule-abiding game creatures of his own invention. A bit like having a computer play checkers against itself.

The experiment is simple enough: a bunch of creatures occupy a checker board, and like checker pieces, they’re red or black. Every turn, one creature has the opportunity to move randomly to another empty space on the board, and their decision to move is based on their comfort with their neighbors. Red pieces want red neighbors, and black pieces want black neighbors, and they keep moving randomly ’till they’re all comfortable. Unsurprisingly, segregated creature communities appear in short order.

What if we our checker-creatures were more relaxed in their comforts? They’d be comfortable as long as they were in the majority; say, at least 50% of their neighbors were the same color. Again, let the computer play itself for a while, and within a few cycles the checker board is once again almost completely segregated.

Schelling segregation. [via]
Schelling segregation. [via]
What if the checker pieces are excited about the prospect of a diverse neighborhood? We relax the criteria even more, so red checkers only move if fewer than a third of their neighbors are red (that is, they’re totally comfortable with 66% of their neighbors being black)? If we run the experiment again, we see, again, the checker board breaks up into segregated communities.

Schelling’s claim wasn’t about how the world worked, but about what the simplest conditions were that could still explain racism. In his fictional checkers-world, every piece could be generously interested in living in a diverse neighborhood, and yet the system still eventually resulted in segregation. This offered a powerful support for the theory that racism could operate subtly, even if every actor were well-intended.

Vi Hart and Nicky Case created an interactive visualization/game that teaches Schelling’s segregation model perfectly. Go play it. Then come back. I’ll wait.


Such an experiment can be devised for our 41st-chair/positive-feedback system as well. We can even build a simulation whose rules match the Academic Musical Chairs I described above. All we need to do is show that a system in which both effects operate (a fact empirically proven time and again in academia) produces fundamental challenges for meritocracy. Such a model would be show that simple meritocratic intent is insufficient to produce a meritocracy. Hulk smashing the myth of the meritocracy seems fun; I think I’ll get started soon.

The Social Network

Our world ain’t that simple. For one, as seen in Academic Musical Chairs, your place in the social network influences your chances of success. A heavy-hitting advisor, an old-boys cohort, etc., all improve your starting position when you begin the game.

To put it more operationally, let’s go back to the Columbia social music experiment. Part of a song’s success was due to quality, but the stuff that made stars was much more contingent on chance timing followed by positive feedback loops. Two of the authors from the 2006 study wrote another in 2007, echoing this claim that good timing was more important than individual influence:

models of information cascades, as well as human subjects experiments that have been designed to test the models (Anderson and Holt 1997; Kubler and Weizsacker 2004), are explicitly constructed such that there is nothing special about those individuals, either in terms of their personal characteristics or in their ability to influence others. Thus, whatever influence these individuals exert on the collective outcome is an accidental consequence of their randomly assigned position in the queue.

These articles are part of a large literature in predicting popularity, viral hits, success, and so forth. There’s The Pulse of News in Social Media: Forecasting Popularity by Bandari, Asur, & Huberman, which showed that a top predictor of newspaper shares was the source rather than the content of an article, and that a major chunk of articles that do get shared never really make it to viral status. There’s Can Cascades be Predicted? by Cheng, Adamic, Dow, Kleinberg, and Leskovec (all-star cast if ever I saw one), which shows the remarkable reliance on timing & first impressions in predicting success, and also the reliance on social connectivity. That is, success travels faster through those who are well-connected (shocking, right?), and structural properties of the social network are important. This study by Susarla et al. also shows the importance of location in the social network in helping push those positive feedback loops, effecting the magnitude of success in YouTube Video shares.

Twitter information cascade. [via]
Twitter information cascade. [via]
Now, I know, social media success does not an academic career predict. The point here, instead, is to show that in each of these cases, before sharing occurs and not taking into account social media effects (that is, relying solely on the merit of the thing itself), success is predictable, but stardom is not.

Concluding, Finally

Relating it to Academic Musical Chairs, it’s not too difficult to say whether someone will end up in the 41st chair, but it’s impossible to tell whether they’ll end up in seats 1-40 until you keep an eye on how positive feedback loops are affecting their career.

In the academic world, there’s a fertile prediction market for Nobel Laureates. Social networks and Matthew Effect citation bursts are decent enough predictors, but what anyone who predicts any kind of success will tell you is that it’s much easier to predict the pool of recipients than it is to predict the winners.

Take Economics. How many working economists are there? Tens of thousands, at least. But there’s this Econometric Society which began naming Fellows in 1933, naming 877 Fellows by 2011. And guess what, 60 of 69 Nobel Laureates in Economics before 2011 were Fellows of the society. The other 817 members are or were occupants of the 41st chair.

The point is (again, sorry), academic meritocracy is a myth. Merit is a price of admission to the game, but not a predictor of success in a scarce economy of jobs and resources. Once you pass the basic merit threshold and enter the 41st chair, forces having little to do with intellectual curiosity and rigor guide eventual success (ahem). Small positive biases like gender, well-connected advisors, early citations, lucky timing, etc. feed back into increasingly larger positive biases down the line. And since there are only so many faculty jobs out there, these feedback effects create a naturally imbalanced playing field. Sometimes Einsteins do make it into the middle ring, and sometimes they stay patent clerks. Or adjuncts, I guess. Those who do make it past the 41st chair are poorly-suited to tell you why, because by and large they employed the same strategies as everybody else.

Figure 1: Academic Musical Chairs
Yep, Academic Musical Chairs

And if these six thousand words weren’t enough to convince you, I leave you with this article and this tweet. Have a nice day!

Addendum for Historians

You thought I was done?

As a historian of science, this situation has some interesting repercussions for my research. Perhaps most importantly, it and related concepts from Complex Systems research offer a middle ground framework between environmental/contextual determinism (the world shapes us in fundamentally predictable ways) and individual historical agency (we possess the power to shape the world around us, making the world fundamentally unpredictable).

More concretely, it is historically fruitful to ask not simply what non-“scientific” strategies were employed by famous scientists to get ahead (see Biagioli’s Galileo, Courtier), but also what did or did not set those strategies apart from the masses of people we no longer remember. Galileo, Courtier provides a great example of what we historians can do on a larger scale: it traces Galileo’s machinations to wind up in the good graces of a wealthy patron, and how such a system affected his own research. Using recently-available data on early modern social and scholarly networks, as well as the beginnings of data on people’s activities, interests, practices, and productions, it should be possible to zoom out from Biagioli’s viewpoint and get a fairly sophisticated picture of trajectories and practices of people who weren’t Galileo.

This is all very preliminary, just publicly blogging whims, but I’d be fascinated by what a wide-angle (dare I say, macroscopic?) analysis of the 41st chair in could tell us about how social and “scientific” practices shaped one another in the 16th and 17th centuries. I believe this would bear previously-impossible fruit, since a lone historian grasping ten thousand tertiary actors at once is a fool’s errand, but is a walk in the park for my laptop.

As this really is whim-blogging, I’d love to hear your thoughts.

Notes:

  1. Unless it’s really awful, but let’s avoid that discussion here.
  2. short of a TARDIS.

Fixing the irregular

Our word “fix” comes from fixus: unwavering; immovable; constant; fixed/fastened. Well, the scottbot irregular has been slowly breaking for years, finally broke last week, and it was time to fix it.

Broken how?

A combination of human error (my own), accruing chaos, the complexities of WordPress, and the awful-but-cheap hosting solution that is bluehost.com. As many noticed, the site’s been slowing down, interactive elements like my photo gallery stopped working, and by last week, pages would go dark for hours at a time. By this week, bluehost no longer allowed me ftp or cpanel access. So yesterday I took my business to ReclaimHosting.com, the hands-down best (and friendliest) hosting service for personal and small-scale academic websites.

Quoth the Server "404"
Quoth the Server “404”

I still haven’t figured out what finally did it in, but with so many moving parts, it seemed better to start fresh than repair the beast. I’m currently working on a jekyll static website; this new wordpress blog you’re reading now is an interim solution. However, I couldn’t just cut my losses and start over, since I’ve put a lot of my soul into the 100+ blog posts & pages I’ve written here since 2009.

More importantly, my site has been cited in dozens of articles, and appears on the syllabus of hundreds of courses, DH and otherwise. If I delete the content, I’m destroying part of the scholarly record, and potentially ruining the morning of professors who assign my blog posts as reading, only to find out at the last minute that it no longer exists.

Here lies the problem. Because I no longer had back-end access to my website, I could not download my content through the usual channels. Because of the peculiarities of my various WordPress customizations, not worth detailing here, I could not use a plugin to export my site and its contents.

Since I wanted the form of my site preserved for the scholarly record, the only solution I could come up with was to crawl my entire site, externally, and download static html versions of each page on scottbot.net as it used to exist.

the old scottbot irregular
the old scottbot irregular

Fixed how?

This is where the double-meaning of fix, described above, comes into play. I wanted the site functioning again, not broken, but I also wanted to preserve the old website as it existed at the URLs everyone has already linked to. For example, a bunch of syllab(uses|i)  link to http://www.scottbot.net/HIAL/?tag=networks-demystified to direct their students to my networks demystified posts. I wanted to make sure that URL would continue to point to the version of the site they intended to link to, while also migrating the old content into a new system that I’d be able to update more fluidly. Thankfully the old directory for the site, /HIAL/ (the site used to be called History Is A Lab), made that easier: the new version of the irregular would reside on scottbot.net, and the archive would remain on scottbot.net/HIAL/.

This apparently isn’t trivial. The first step was to use wget (explained and taught by Ian Milligan on the Programming Historian) to download a static version of the entire original irregular. After fiddling with the wget parameters and redownloading my site a few times, I ended up with a mostly-complete mirror of all the old content. Then I uploaded the entire mirror to my new host in the /HIAL/ directory. Yay!

Yaaaay!
Yaaaay!

The only catch was that old dynamic page URLs, like scottbot.net/HIAL/?tag=networks-demystified, were saved by wget as static html pages, like scottbot.net/HIAL/index.html@tag=networks-demystified.html. The solution, Dave Lester helped me figure out last night, was to edit the .htaccess file to make people linking to & visiting HIAL/?tag=networks-demystified automatically redirect to HIAL/index.html@tag=networks-demystified.html

The .htaccess file sits on your server, quietly directing traffic to the various places it should go. In my case, I needed to use regular expressions (remember that thing Shawn, Ian, and I taught in The Historian’s Macroscope?) to redirect all traffic pointing to HIAL/?[anything] to HIAL/index.html@[anything]. An hour or so of learning how .htaccess worked resulted in:

RewriteEngine On
RewriteBase /HIAL/
RewriteCond %{QUERY_STRING} ^(.*)$
RewriteRule ^$ index.html@%1.html? [L,R=301]

which, after some false starts, seems to work. The old site is now fixed, as in constant; secured; unwavering, at scottbot.net/HIAL/. The new irregular, at scottbot.net, is now fixed, as in functional, dynamic. It will continue to evolve and change.

the scottbot irregular is dead. Long live the scottbot irregular!

Representation at Digital Humanities Conferences (2000-2015)

Nickoal Eichmann (corresponding author), Jeana Jorgensen, Scott B. Weingart 1

NOTE: This is a pre-peer reviewed draft submitted for publication in Feminist Debates in Digital Humanities, eds. Jacque Wernimont and Elizabeth Losh, University of Minnesota Press (2017). Comments are welcome, and a downloadable dataset / more figures are forthcoming. This chapter will be released alongside another on the history of DH conferences, co-authored by Weingart & Eichmann (forthcoming), which will go into further detail on technical aspects of this study, including the data collection & statistics. Many of the materials first appeared on this blog. To cite this preprint, use the figshare DOI:  https://dx.doi.org/10.6084/m9.figshare.3120610.v1

Abstract

Digital Humanities (DH) is said to have a light side and a dark side. Niceness, globality, openness, and inclusivity sit at one side of this binary caricature; commodification, neoliberalism, techno-utopianism, and white male privilege sit at the other. At times, the plurality of DH embodies both descriptions.

We hope a diverse and critical DH is a goal shared by all. While DH, like the humanities writ large, is not a monolith, steps may be taken to improve its public face and shared values through positively influencing its communities. The Alliance of Digital Humanities Organizations’ (ADHO’s) annual conference hosts perhaps the largest such community. As an umbrella organization of six international digital humanities constituent organizations, as well as 200 DH centers in a few dozen countries, ADHO and its conference ought to represent the geographic, disciplinary, and demographic diversity of those who identify as digital humanists.

The annual conference offers insight into how the world sees DH. While it may not represent the plurality of views held by self-described digital humanists, the conference likely influences the values of its constituents. If the conference glorifies Open Access, that value will be taken up by its regular attendees; if the conference fails to prioritize diversity, this too will be reinforced.

This chapter explores fifteen years of DH conferences, presenting a quantified look at the values implicitly embedded in the event. Women are consistently underrepresented, in spite of the fact that the most prominent figures at the conference are as likely women as men. The geographic representation of authors has become more diverse over time—though authors with non-English names are still significantly less likely to pass peer review. The topical landscape is heavily gendered, suggesting a masculine bias may be built into the value system of the conference itself. Without data on skin color or ethnicity, we are unable to address racial or related diversity and bias here.

There have been some improvements over time and, especially recently, a growing awareness of diversity-related issues. While many of the conference’s negative traits are simply reflections of larger entrenched academic biases, this is no comfort when self-reinforcing biases foster a culture of microaggression and white male privilege. Rather than using this study as an excuse to write off DH as just another biased community, we offer statistics, critiques, and suggestions as a vehicle to improve ADHO’s conference, and through it the rest of self-identified Digital Humanities.

Introduction

Digital humanities (DH), we are told, exists under a “big tent”, with porous borders, little gatekeeping, and, heck, everyone’s just plain “nice”. Indeed, the term itself is not used definitionally, but merely as a “tactical convenience” to get stuff done without worrying so much about traditional disciplinary barriers. DH is “global”, “public”, and diversely populated. It will “save the humanities” from its crippling self-reflection (cf. this essay), while simultaneously saving the computational social sciences from their uncritical approaches to data. DH contains its own mirror: it is both humanities done digitally, and the digital as scrutinized humanistically. As opposed to the staid, backwards-looking humanities we are used to, the digital humanities “experiments”, “plays”, and even “embraces failure” on ideological grounds. In short, we are the hero Gotham needs.

Digital Humanities, we are told, is a narrowly-defined excuse to push a “neoliberal agenda”, a group of “bullies” more interested in forcing humanists to code than in speaking truth to power. It is devoid of cultural criticism, and because of the way DHers uncritically adopt tools and methods from the tech industry, they in fact often reinforce pre-existing power structures. DH is nothing less than an unintentionally rightist vehicle for techno-utopianism, drawing from the same font as MOOCs and complicit in their devaluing of education, diversity, and academic labor. It is equally complicit in furthering both the surveillance state and the surveillance economy, exemplified in its stunning lack of response to the Snowden leaks. As a progeny of the computer sciences, digital humanities has inherited the same lack of gender and racial diversity, and any attempt to remedy the situation is met with incredible resistance.

The truth, as it so often does, lies somewhere in the middle of these extreme caricatures. It’s easy to ascribe attributes to Digital Humanities synecdochically, painting the whole with the same brush as one of its constituent parts. One would be forgiven, for example, for coming away from the annual international ADHO Digital Humanities conference assuming DH were a parade of white men quantifying literary text. An attendee of HASTAC, on the other hand, might leave seeing DH as a diverse community focused on pedagogy, but lacking in primary research. Similar straw-snapshots may be drawn from specific journals, subcommunities, regions, or organizations.

But these synecdoches have power. Our public face sets the course of DH, via who it entices to engage with us, how it informs policy agendas and funding allocations, and who gets inspired to be the next generation of digital humanists. Especially important is the constituency and presentation of the annual Digital Humanities conference. Every year, several hundred students, librarians, staff, faculty, industry professionals, administrators and researchers converge for the conference, organized by the Alliance of Digital Humanities Organizations (ADHO). As an umbrella organization of six international digital humanities constituent organizations, as well as 200 DH centers in a few dozen countries, ADHO and its conference ought to represent the geographic, disciplinary, and demographic diversity of those who identify as digital humanists. And as DH is a community that prides itself on its activism and its social/public goals, if the annual DH conference does not celebrate this diversity, the DH community may suffer a crisis of identity (…okay, a bigger crisis of identity).

So what does the DH conference look like, to an outsider? Is it diverse? What topics are covered? Where is it held? Who is participating, who is attending, and where are they coming from? This essay offers incomplete answers to these questions for fifteen years of DH conferences (2000-2015), focusing particularly on DH2013 (Nebraska, USA), DH2014 (Lausanne, Switzerland), and DH2015 (Sydney, Australia). 2 We do so with a double-agenda: (1) to call out the biases and lack of diversity at ADHO conferences in the earnest hope it will help improve future years’ conferences, and (2) to show that simplistic, reductive quantitative methods can be applied critically, and need not feed into techno-utopic fantasies or an unwavering acceptance of proxies as a direct line to Truth. By “distant reading” DH and turning our “macroscopes” on ourselves, we offer a critique of our culture, and hopefully inspire fruitful discomfort in DH practitioners who apply often-dehumanizing tools to their subjects, but have not themselves fallen under the same distant gaze.

Among other findings, we observe a large gender gap for authorship that is not mirrored among those who simply attend the conference. We also show a heavily gendered topical landscape, which likely contributes to topical biases during peer review. Geographic diversity has improved over fifteen years, suggesting ADHO’s strategy to expand beyond the customary North American / European rotation was a success. That said, there continues to be a visible bias against non-English names in the peer review process. We could not get data on ethnicity, race, or skin color, but given our regional and name data, as well as personal experience, we suspect in this area, diversity remains quite low.

We do notice some improvement over time and, especially in the last few years, a growing awareness of our own diversity problems. The #whatifDH2016 3 hashtag, for example, was a reaction to an all-male series of speakers introducing DH2015 in Sydney. The hashtag caught on and made it to ADHO’s committee on conferences, who will use it in planning future events. Our remarks here are in the spirit of #whatifDH2016; rather than using this study as an excuse to defame digital humanities, we hope it becomes a vehicle to improve ADHO’s conference, and through it the rest of our community.

Social Justice and Equality in the Digital Humanities

Diversity in the Academy

In order to contextualize gender and ethnicity in the DH community, we must take into account developments throughout higher education. This is especially important since much of DH work is done in university and other Ivory Tower settings. Clear progress has been made from the times when all-male, all-white colleges were the norm, but there are still concerns about the marginalization of scholars who are not white, male, able-bodied, heterosexual, or native English-speakers. Many campuses now have diversity offices and have set diversity-related goals at both the faculty and student levels (for example, see the Ohio State University’s diversity objectives and strategies 2007-12). On the digital front, blogs such as Conditionally Accepted, Fight the Tower, University of Venus, and more all work to expose the normative biases in academia through activist dialogue.

From both a historical and contemporary lens, there is data supporting the clustering of women and other minority scholars in certain realms of academia, from specific fields and subjects to contingent positions. When it comes to gender, the phrase “feminization” has been applied both to academia in general and to specific fields. It contains two important connotations: that of an area in which women are in the majority, and the sense of a change over time, such that numbers of women participants are increasing in relation to men (Leathwood and Read 2008, 10). It can also signal a less quantitative shift in values, “whereby ‘feminine’ values, concerns, and practices are seen to be changing the culture of an organization, a field of practice or society as a whole” (ibid).

In terms of specific disciplines, the feminization of academia has taken a particular shape. Historian Lynn Hunt suggests the following propositions about feminization in the humanities and history specifically: the feminization of history parallels what is happening in the social sciences and humanities more generally; the feminization of the social sciences and humanities is likely accompanied by a decline in status and resources; and other identity categories, such as ethnic minority status and age/generation, also interact with feminization in ways that are still becoming coherent.

Feminization has clear consequences for the perception and assignation of value of a given field. Hunt writes: “There is a clear correlation between relative pay and the proportion of women in a field; those academic fields that have attracted a relatively high proportion of women pay less on average than those that have not attracted women in the same numbers.” Thus, as we examine the topics that tend to be clustered by gender in DH conference submissions, we must keep in mind the potential correlations of feminization and value, though it is beyond the scope of this paper to engage in chicken-or-egg debates about the causal relationship between misogyny and the devaluing of women’s labor and women’s topics.

There is no obvious ethnicity-based parallel to the concept of the feminization of academia; it wouldn’t be culturally intelligible to talk about the “people-of-colorization of academia”, or the “non-white-ization of academia.” At any rate, according to a U.S. Department of Education survey, in 2013 79% of all full-time faculty in degree-granting postsecondary institutions were white. The increase of non-white faculty from 2009 (19.2% of the whole) to 2013 (21.5%) is very small indeed.

Why does this matter? As Jeffrey Milem, Mitchell Chang, and Anthony Lising Antonio write in regard to faculty of color, “Having a diverse faculty ensures that students see people of color in roles of authority and as role models or mentors. Faculty of color are also more likely than other faculty to include content related to diversity in their curricula and to utilize active learning and student-centered teaching techniques…a coherent and sustained faculty diversity initiative must exist if there is to be any progress in diversifying the faculty” (25). By centering marginalized voices, scholarly institutions have the ability to send messages about who is worthy of inclusion.

Recent Criticisms of Diversity in DH

In terms of DH specifically, diversity within the community and conferences has been on the radar for several years, and has recently gained special attention, as digital humanists and other academics alike have called for critical and feminist engagement in diversity and a move away from what seems to be an exclusionary culture. In January 2011, THATCamp SoCal included a section called “Diversity in DH,” in which participants explored the lack of openness in DH and, in the end, produced a document, “Toward an Open Digital Humanities” that summarized their discussions. The “Overview” in this document mirrors the same conversation we have had for the last several years:

We recognize that a wide diversity of people is necessary to make digital humanities function. As such, digital humanities must take active strides to include all the areas of study that comprise the humanities and must strive to include participants of diverse age, generation, sex, skill, race, ethnicity, sexuality, gender, ability, nationality, culture, discipline, areas of interest. Without open participation and broad outreach, the digital humanities movement limits its capacity for critical engagement. (ibid)

This proclamation represents the critiques of the DH landscape in 2011, in which DH practitioners and participants were assumed to be privileged and white, that they excluded student-learners, and that they held myopic views of what constitutes DH. Most importantly for this chapter, THATCamp SoCal’s “Diversity in DH” section participants called for critical approaches and social justice of DH scholarship and participation, including “principles for feminist/non-exclusionary groundrules in each session (e.g., ‘step up/step back’) so that the loudest/most entitled people don’t fill all the quiet moments.” They also advocated defending the least-heard voices “so that the largest number of people can benefit…”

These voices certainly didn’t fall flat. However, since THATCamps are often comprised of geographically local DH microcommunities, they benefit from an inclusive environment but suffer as isolated events. As result, it seems that the larger, discipline-specific venues which have greater attendance and attraction continue to amplify privileged voices. Even so, 2011 continued to represent a year that called for critical engagement in diversity in DH, with an explicit “Big Tent” theme for DH2011 held in Stanford, California. Embracing the concept the “Big Tent” deliberately opened the doors and widened the spectrum of DH, at least in terms of methods and approaches. However, as Melissa Terras pointed out, DH was “still a very rich, very western academic field” (Terras, 2011), even with a few DH2011 presentations engaging specifically with topics of diversity in DH. 4

A focus on diversity-related issues has only grown in the interim. We’ve recently seen greater attention and criticism of DH exclusionary culture, for instance, at the 2015 Modern Language Association (MLA) annual convention, which included the roundtable discussion “Disrupting Digital Humanities.” It confronted the “gatekeeping impulse” in DH, and echoing THATCamp SoCal 2011, these panelists aimed to shut down hierarchical dialogues in DH, encourage non-traditional scholarship, amplify “marginalized voices,” advocate for DH novices, and generously support the work of peers. 5 The theme for DH2015 in Sydney, Australia was “Global Digital Humanities,” and between its successes and collective action arising from frustrations at its failures, the community seems poised to pay even greater attention to diversity. Other recent initiatives in this vein worth mention include #dhpoco, GO::DH, and Jacqueline Wernimont’s “Build a Better Panel,” 6 whose activist goals are helping diversify the community and raise awareness of areas where the community can improve.

While it would be fruitful to conduct a longitudinal historiographical analysis of diversity in DH, more recent criticisms illustrate a history of perceived exclusionary culture, which is why we hope to provide a data-driven approach to continue the conversation and call for feminist and critical engagement and intervention.

Data

While DH as a whole has been critiqued for its lack of diversity and inclusion, how does the annual ADHO DH conference measure up? To explore this in a data-driven fashion, we have gathered publicly available annual ADHO conference programs and schedules from 2000-2015. From those conference materials, we have entered presentation and author information into a spreadsheet to analyze various trends over time, such as gender and geography as indicators of diversity. Particular information that we have collected includes: presentation title, keywords (if available), abstract and full-text (if available), presentation type, author name, author institutional affiliation and academic department (if available), and corresponding country of that affiliation at the time of the presentation(s). We normalized and hand-cleaned names, institutions, and departments, so that, to the best of our knowledge, each author entry represented a unique person and, accordingly, was assigned a unique ID. Next, we added gender information (m/f/other/unknown) to authors by a combination of hand-entry and automated inference. While this is problematic for many reasons, 7 since it does not allow for diversity in gender options and tracing gender changes over time, it does give us a useful preliminary lense to view gender diversity at DH conferences.

For 2013’s conference, ADHO instituted a series of changes aimed at improving inclusivity, diversity, and quality. This drive was steered by that year’s program committee chair, Bethany Nowviskie, alongside 2014’s chair, Melissa Terras. Their reformative goals matched our current goals in this essay, and speak to a long history of experimentation and improvement efforts on behalf of ADHO. Their changes included making the conference more welcome to outsiders through ending policies that only insiders knew about; making the CFP less complex and easier to translate into multiple languages; taking reviewer language competencies into account systematically; and streamlining the submission and review process.

The biggest noticeable change to DH2013, however, was the institution of a reviewer bidding process and a phase of semi-open peer review. Peer reviewers were invited to read through and rank every submitted abstract according to how qualified they felt to review the abstract. Following this, the conference committee would match submissions to qualified peer reviewers, taking into account conflicts of interest. Submitting authors were invited to respond to reviews, and the committee would make a final decision based on the various reviews and rebuttals.This continues to be the process through DH2016. Changes continue to be made, most recently in 2016 with the addition of “Diversity” and “Multilinguality” as new keywords authors can append to their submissions.

While the list of submitted abstracts was private, accessible only to reviewers, as reviewers ourselves we had access to the submissions during the bidding phase. We used this access to create a dataset of conference submissions for DH2013, DH2014, and DH2015, which includes author names, affiliations, submission titles, author-selected topics, author-chosen keywords, and submission types (long paper, short paper, poster, panel).

We augmented this dataset by looking at the final conference programs in ‘13, ‘14, and ‘15, noting which submissions eventually made it onto the final conference program, and how they changed from the submission to the final product. This allows us to roughly estimate the acceptance rate of submissions, by comparing the submitted abstract lists to the final programs. It is not perfect, however, given that we don’t actually know whether submissions that didn’t make it to the final program were rejected, or if they were accepted and withdrawn. We also do not know who reviewed what, nor do we know the reviewers’ scores or any associated editorial decisions.

The original dataset, then, included fields for title, authors, author affiliations, original submission type, final accepted type, topics, keywords, and a boolean field for whether a submission made it to the final conference program. We cleaned the data up by merging duplicate people, ensuring e.g., if “Melissa Terras” was an author on two different submissions, she counted as the same person. For affiliations, we semi-automatically merged duplicate institutions, found the countries they reside in, and assigned those countries to broad UN regions. We also added data to the set, first automatically guessing a gender for each author, and then correcting the guesses by hand.

Given that abstracts were submitted to conferences with an expectation of privacy, we have not released the full submission dataset; we have, however, released the full dataset of final conference programs. 8

We would like to acknowledge the gross and problematic simplifications involved in this process of gendering authors without their consent or input. As Miriam Posner has pointed out, with regards to Getty’s Union List of Author Names, “no self-respecting humanities scholar would ever get away with such a crude representation of gender in traditional work”. And yet, we represent authors in just this crude fashion, labeling authors as male, female, or unknown/other. We did not encode changes of author gender over time, even though we know of at least a few authors in the dataset for whom this applies. We do not use the affordances of digital data to represent the fluidity of gender. This is problematic for a number of reasons, not least of which because, when we take a cookie cutter to the world, everything in the world will wind up looking like cookies.

We made this decision because, in the end, all data quality is contingent to the task at hand. It is possible to acknowledge an ontology’s shortcomings while still occasionally using that ontology to a positive effect. This is not always the case: often poor proxies get in the way a research agenda (e.g., citations as indicators of “impact” in digital humanities), rather than align with it. In the humanities, poor proxies are much more likely to get in the way of research than help it along, and afford the ability to make insensitive or reductivist decisions in the name of “scale”.

For example, in looking for ethnic diversity of a discipline, one might analyze last names as a proxy for country of origin, or analyze the color of recognized faces in pictures from recent conferences as a proxy for ethnic genealogy. Among other reasons, this approach falls short because ethnicity, race, and skin color are often not aligned, and last names (especially in the U.S.) are rarely indicative of anything at all. But they’re easy solutions, so people use them. These are moments when a bad proxy (and for human categories, proxies are almost universally bad) does not fruitfully contribute to a research agenda. As George E.P. Box put it, “all models are wrong, but some are useful.”

Some models are useful. Sometimes, the stars align and the easy solution is the best one for the question. If someone were researching immediate reactions of racial bias in the West, analyzing skin tone may get us something useful. In this case, the research focus is not someone’s racial identity, but someone’s race as immediately perceived by others, which would likely align with skin tone. Simply: if a person looks black, they’re more likely to be treated as such by the (white) world at large. 9

We believe our proxies, though grossly inaccurate, are useful for the questions of gender and geographic diversity and bias. The first step to improving DH conference diversity is noticing a problem; our data show that problem through staggeringly imbalanced regional and gender ratios. With regards to gender bias, showing whether reviewers are less likely to accept papers from authors who appear to be women can reveal entrenched biases, whether or not the author actually identifies as a woman. With that said, we invite future researchers to identify and expand on our admitted categorical errors, allowing everyone to see the contours of our community with even greater nuance.

Analysis

The annual ADHO conference has grown significantly in the last fifteen years, as described in our companion piece 10, within which can be found a great discussion of our methods. This piece, rather than covering overall conference trends, focuses specifically on issues of diversity and acceptance rates. We cover geographic and gender diversity from 2000-2015, with additional discussions of topicality and peer review bias beginning in 2013.

Gender

Women comprise 36.1% of the 3,239 authors to DH conference presentations over the last fifteen years, counting every unique author only once. Melissa Terras’ names appears on 29 presentations between 200-2015, and Scott B. Weingart’s name appears on 4 presentations, but for the purpose of this metric each name counts only once. Female authorship representation fluctuates between 29%-38% depending on the year.

Weighting every authorship event individually (i.e., Weingart’s name counts 4 times, Terras’ 29 times), women’s representation drops to 32.7%. This reveals that women are less likely to author multiple pieces compared to their male counterparts. More than a third of the DH authorship pool are women, but fewer than a third of every name that appears on a presentation is a woman’s. Even fewer single-authored pieces are by a woman; only 29.8% of the 984 single-authored works between 2000-2015 female-authored. About a third (33.4%) of first authors on presentations are women. See Fig. 1 for a breakdown of these numbers over time. Note the lack of periodicity, suggesting gender representation is not affected by whether the conference is held in Europe or North America (until 2015, the conference alternated locations every year). The overall ratio wavers, but is neither improving nor worsening over time.

Figure 1. re
Figure 1. Representation of Women at ADHO Conferences, 2000-2015.

The gender disparity sparked controversy at DH2015 in Sydney. It was, however, at odds with a common anecdotal awareness that many of the most respected role-models and leaders in the community are women. To explore this disconnect, we experimented with using centrality in co-authorship networks as a proxy for fame, respectability, and general presence within the DH consciousness. We assume that individuals who author many presentations, co-author with many people, and play a central role in connecting DH’s disparate communities of authorship are the ones who are most likely to garner the respect (or at least awareness) of conference attendees.

We created a network of authors connected to their co-authors from presentations between 2000-2015, with ties strengthening the more frequently two authors collaborate. Of the 3,239 authors in our dataset, 61% (1,750 individuals) are reachable by one another via their co-authorship ties. For example, Beth Plale is reachable by Alan Liu because she co-authored with J. Stephen Downie, who co-authored with Geoffrey Rockwell, who co-authored with Alan Liu. Thus, 61% of the network is connected in one large component, and there are 299 smaller components, islands of co-authorship disconnected from the larger community.

The average woman co-authors with 5 other authors, and the average man co-authors with 5.3 other authors. The median number of co-authors for both men and women is 4. The average and median of several centrality measurements (closeness, betweenness, pagerank, and eigenvector) for both men and women are nearly equivalent; that is, any given woman is just as likely to be near the co-authorship core as any given man. Naturally, this does not imply that half of the most central authors are women, since only a third of the entire authorship pool are women. It means instead that gender does not influence one’s network centrality. Or at least it should.

The statistics show a curious trend for the most central figures in the network. Of the top 10 authors who co-author with the most others, 60% are women. Of the top 20, 45% are women. Of the top 50, 38% are women. Of the top 100, 32% are women. That is, the over half the DH co-authorship stars are women, but the further towards the periphery you look, the more men occupy the middle-tier positions (i.e., not stars, but still fairly active co-authors). The same holds true for the various centrality measurements: betweenness (60% women in top 10; 40% in top 20; 32% in top 50; 34% in top 100), pagerank (50% women in top 10; 40% in top 20; 32% in top 50; 28% in top 100), and eigenvector (60% women in top 10; 40% in top 20; 40% in top 50; 34% in top 100).

In short, half or more of the DH conference stars are women, but as you creep closer to the network periphery, you are increasingly likely to notice the prevailing gender disparity. This supports the mismatch between an anecdotal sense that women play a huge role in DH, and the data showing they are poorly represented at conferences. The results also match with the fact that women are disproportionately more likely to write about management and leadership, discussed at greater length below.

The heavily-male gender skew at DH conferences may lead one to suspect a bias in the peer review process. Recent data, however, show that if such a bias exists, it is not direct. Over the past three conferences, 71% of women and 73% of men who submitted presentations passed the peer review process. The difference is not great enough to rule out random chance (p=0.16 using χ²). The skew at conferences is more a result of fewer women submitting articles than of women’s articles not getting accepted. The one caveat, explained more below, is that certain topics women are more likely to write about are also less likely to be accepted through peer-review.

This does not imply a lack of bias in the DH community. For example, although only 33.5% of authors at DH2015 in Sydney were women, 46% of conference attendees were women. If women were simply uninterested in DH, the split in attendance vs. authorship would not be so high.

In regard to discussions of women in different roles in the DH community – less the publishing powerhouses and more the community leaders and organizers – the concept of the “glass cliff” can be useful. Research on the feminization of academia in Sweden uses the term “glass cliff” as a “metaphor used to describe a phenomenon when women are appointed to precarious leadership roles associated with an increased risk of negative consequences when a company is performing poorly and for example is experiencing profit falls, declining stock performance, and job cuts” (Peterson 2014, 4). The female academics (who also occupied senior managerial positions) interviewed in Helen Peterson’s study expressed concerns about increasing workloads, the precarity of their positions, and the potential for interpersonal conflict.

Institutional politics may also play a role in the gendered data here. Sarah Winslow says of institutional context that “female faculty are less likely to be located at research institutions or institutions that value research over teaching, both of which are associated with greater preference for research” (779). The research, teaching, and service divide in academia remains a thorny issue, especially given the prevalence of what has been called the pink collar workforce in academia, or the disproportionate amount of women working in low-paying teaching-oriented areas. This divide likely also contributed to differing gender ratios between attendees and authors at DH2015.

While the gendered implications of time allocation in universities are beyond the scope of this paper, it might be useful to note that there might be long-term consequences for how people spend their time interacting with scholarly tasks that extend beyond one specific institution. Winslow writes: “Since women bear a disproportionate responsibility for labor that is institution-specific (e.g., institutional housekeeping, mentoring individual students), their investments are less likely to be portable across institutions. This stands in stark contrast to men, whose investments in research make them more highly desirable candidates should they choose to leave their own institutions” (790). How this plays out specifically in the DH community remains to be seen, but the interdisciplinarity of DH along with its projects that span multiple working groups and institutions may unsettle some of the traditional bias that women in academia face.

Locale

Until 2015, the DH conference alternated every year between North America and Europe. As expected, until recently, the institutions represented at the conference have hailed mostly from these areas, with the primary locus falling in North America. In fact, since 2000, North American authors were the largest authorial constituency at eleven of the fifteen conferences, even though North America only hosted the conference seven times in that period.

With that said, as opposed to gender representation, national and institutional diversity is improving over time. Using an Index of Qualitative Variation (IQV), institutional variation begins around 0.992 in 2000 and ends around 0.996 in 2015, with steady increases over time. National IQV begins around 0.79 in 2010 and ends around 0.83 in 2015, also with steady increases over time. The most recent conference was the first that included over 30% of authors and attendees arriving from outside Europe or North America. Now that ADHO has implemented a three-year cycle, with every third year marked by a movement outside its usual territory, that diversity is likely to increase further still.

The most well-represented institutions are not as dominating as some may expect, given the common view of DH as a community centered around particular powerhouse departments or universities. The university with the most authors contributing to DH conferences (2.4% of the total authors) is King’s College London, followed by the Universities of Illinois (1.85%), Alberta (1.83%), and Virginia (1.75%). The most prominent university outside of North America or Europe is Ritsumeikan University, contributing 1.07% of all DH conference authors. In all, over a thousand institutions have contributed authors to the conference, and that number increases every year.

While these numbers represent institutional origins, the data available does not allow any further diving into birth countries, native language, ethnic identities, etc. The 2013-2015 dataset, including peer review information, does yield some insight into geography-influenced biases that may map to language or identity. While the peer review data do not show any clear bias by institutional country, there is a very clear bias against names which do not appear frequently in the U.S. Census or Social Security Index. We discovered this when attempting to statistically infer the gender of authors using these U.S.-based indices. 11 From 2013-2015, presentations written by those with names appearing frequently in these indices were significantly more likely to be accepted than those written by authors with non-English names (p < 0.0001). Whereas approximately 72% of authors with common U.S. names passed peer review, only 61% of authors with uncommon names passed. Without more data, we have no idea whether this tremendous disparity is due to a bias against popular topics from non-English-speaking countries, a higher likelihood of peer reviewers rejecting text written by non-native writers, an implicit bias by peer reviewers when they see “foreign” names, or something else entirely.

Topic

When submitting a presentation, authors are given the opportunity to provide keywords for their submission. Some keywords can be chosen freely, while others must be chosen from a controlled list of about 100 potential topics. These controlled keywords are used to help in the process of conference organization and peer reviewer selection, and they stay roughly constant every year. New keywords are occasionally added to the list, as in 2016, where authors can now select three topics which were not previously available: “Digital Humanities – Diversity”, “Digital Humanities – Multilinguality”, and “3D Printing”. The 2000-2015 conference dataset does not include keywords for every article, so this analysis will only cover the more detailed dataset, 2013-2015, with additional data on submissions for DH2016.

From 2013-2016, presentations were tagged with an average of six controlled keywords per submission. The most-used keywords are unsurprising: “Text Analysis” (tagged on 22% of submissions), “Data Mining / Text Mining” (20%), “Literary Studies” (20%), “Archives, Repositories, Sustainability And Preservation” (19%), and “Historical Studies” (18%). The most frequently-used keyword potentially pertaining directly to issues of diversity, “Cultural Studies”, appears on on 14% of submissions from 2013-2016. Only 2% of submissions are tagged with “Gender Studies”. The two diversity-related keywords introduced this year are already being used surprisingly frequently, with 9% of submissions in 2016 tagged “Digital Humanities – Diversity” and 6% of submissions tagged “Digital Humanities – Multilinguality”. With over 650 conference submissions for 2016, this translates to a reasonably large community of DH authors presenting on topics related to diversity.

Joining the topic and gender data for 2013-2015 reveals the extent to which certain subject matters are gendered at DH conferences. 12 Women are twice as likely to use the “Gender Studies” tag as male authors, whereas men are twice as likely to use the “Asian Studies” tag as female authors. Subjects related to pedagogy, creative / performing arts, art history, cultural studies, GLAM (galleries, libraries, archives, museums), DH institutional support, and project design/organization/management are more likely to be presented by women. Men, on the other hand, are more likely to write about standards & interoperability, the history of DH, programming, scholarly editing, stylistics, linguistics, network analysis, and natural language processing / text analysis. It seems DH topics have inherited the usual gender skews associated with the disciplines in which those topics originate.

We showed earlier that there was no direct gender bias in the peer review process. While true, there appears to be indirect bias with respect to how certain gendered topics are considered acceptable by the DH conference peer reviewers. A woman has just as much chance of getting a paper through peer review as a man if they both submit a presentation on the same topic (e.g., both women and men have a 72% chance of passing peer review if they write about network analysis, or a 65% chance of passing peer review if they write about knowledge representation), but topics that are heavily gendered towards women are less likely to get accepted. Cultural studies has a 57% acceptance rate, gender studies 60%, pedagogy 51%. Male-skewed topics have higher acceptance rates, like text analysis (83%), programming (80%), or Asian studies (79%). The female-gendering of DH institutional support and project organization also supports our earlier claim that, while women are well-represented among the DH leadership, they are more poorly represented in those topics that the majority of authors are discussing (programming, text analysis, etc.).

Regarding the clustering – and devaluing – of topics that women tend to present on at DH conferences, the widespread acknowledgement of the devaluing of women’s labor may help to explain this. We discussed the feminization of academia above, and indeed, this is a trend seen in practically all facets of society. The addition of emotional labor or caretaking tasks complicates this. Economist Teresa Ghilarducchi explains: “a lot of what women do in their lives is punctuated by time outside of the labor market — taking care of family, taking care of children — and women’s labor has always been devalued…[people] assume that she had some time out of the labor market and that she was doing something that was basically worthless, because she wasn’t being paid for it.” In academia specifically, the labyrinthine relationship of pay to tasks/labor further obscures value: we are rarely paid per task (per paper published or presented) on the research front; service work is almost entirely invisible; and teaching factors in with course loads, often with more up-front transparency for contingent laborers such as adjuncts and part-timers.

Our results seem to point to less of an obvious bias against women scholars than a subtler bias against topics that women tend to gravitate toward, or are seen as gravitating toward. This is in line with the concept of postfeminism, or the notion that feminism has met its main goals (e.g. getting women the right to vote and the right to an education), and thus is irrelevant to contemporary social needs and discourse. Thoroughly enmeshed in neoliberal discourse, postfeminism makes discussing misogyny seem obsolete and obscures the subtler ways in which sexism operates in daily life (Pomerantz, Raby, and Stefanik 2013). While individuals may or may not choose to identify as postfeminist, the overarching beliefs associated with postfeminism have permeated North American culture at a number of levels, leading us to posit the acceptance of the ideals of postfeminism as one explanation for the devaluing of topics that seem associated with women.

Discussion and Future Research

The analysis reveals an annual DH conference with a growing awareness of diversity-related issues, with moderate improvements in regional diversity, stagnation in gender diversity, and unknown (but anecdotally poor) diversity with regards to language, ethnicity, and skin color. Knowledge at the DH conference is heavily gendered, though women are not directly biased against during peer review, and while several prominent women occupy the community’s core, women occupy less space in the much larger periphery. No single or small set of institutions dominate the conference attendance, and though North America’s influence on ADHO cannot be understated, recent ADHO efforts are significantly improving the geographic spread of its constituency.

The DH conference, and by extension ADHO, is not the digital humanities. It is, however, the largest annual gathering of self-identified digital humanists, 13 and as such its makeup holds influence over the community at large. Its priorities, successes, and failures reflect on DH, both within the community and to the outside world, and those priorities get reinforced in future generations. If the DH conference remains as it is—devaluing knowledge associated with femininity, comprising only 36% women, and rejecting presentations by authors with non-English names—it will have significant difficulty attracting a more diverse crowd without explicit interventions. Given the shortcomings revealed in the data above, we present some possible interventions that can be made by ADHO or its members to foster a more diverse community, inspired by #WhatIfDH2016:

  • As pointed out by Yvonne Perkins, Ask presenters to include a brief “Collections Used” section, when appropriate. Such a practice would highlight and credit the important work being done by those who aren’t necessarily engaging in publishable research, and help legitimize that work to conference attendees.

  • As pointed out by Vika Zafrin, create guidelines for reviewers explicitly addressing diversity, and provide guidance on noticing and reducing peer review bias.

  • As pointed out by Vika Zafrin, community members can make an effort to solicit presentation submissions from women and people of color.

  • As pointed out by Vika Zafrin, collect and analyze data on who is peer reviewing, to see whether or the extent to which biases creep in at that stage.

  • As pointed out by Aimée Morrison, ensure that the conference stage is at least as diverse as the conference audience. This can be accomplished in a number of ways, from conference organizers making sure their keynote speakers draw from a broad pool, to organizing last-minute lightning lectures specifically for those who are registered but not presenting.

  • As pointed out by Tonya Howe, encourage presentations or attendance from more process-oriented liberal arts delegates.

  • As pointed out by Christina Boyles, encourage the submission of research focused around the intersection of race, gender, and sexuality studies. This may be partially accomplished by including more topical categories for conference submissions, a step which ADHO has already taken for 2016.

  • As pointed out by many, take explicit steps in ensuring conference access to those with disabilities. We suggest this become an explicit part of the application package submitted by potential host institutions.

  • As pointed out by many, ensure the ease of participation-at-a-distance (both as audience and as speaker) for those without the resources to travel.

  • As requested by Karina van Dalen-Oskam, chair of ADHO’s Steering Committee, send her an email on how to navigate the difficult cultural issues facing an international organization.

  • Give marginalized communities greater representation in the DH Conference peer reviewer pool. This can be done grassroots, with each of us reaching out to colleagues to volunteer as reviewers, and organizationally, perhaps by ADHO creating a volunteer group to seek out and encourage more diverse reviewers.

  • Consider the difference between diversifying (verb) vs. talking about diversity (noun), and consider whether other modes of disrupting hegemony, such as decolonization and queering, might be useful in these processes.

  • Contribute to the #whatifDH2016 and #whatifDH2017 discussions on twitter with other ideas for improvements.

Many options are available to improve representation at DH conferences, and some encouraging steps are already being taken by ADHO and its members. We hope to hear more concrete steps that may be taken, especially learned from experiences in other communities or outside of academia, in order to foster a healthier and more welcoming conference going forward.

In the interest of furthering these goals and improving the organizational memory of ADHO, the public portion of the data (final conference programs with full text and unique author IDs) is available alongside this publication [will link in final draft]. With this, others may test, correct, or improve our work. We will continue work by extending the dataset back to 1990, continuing to collect for future conferences, and creating an infrastructure that will allow the database to connect to others with similar collections. This will include the ability to encode more nuanced and fluid gender representations, and for authors to correct their own entries. Further work will also include exploring topical co-occurrence, institutional bias in peer review, how institutions affect centrality in the co-authorship network, and how authors who move between institutions affect all these dynamics.

The Digital Humanities will never be perfect. It embodies the worst of its criticisms and the best of its ideals, sometimes simultaneously. We believe a more diverse community will help tip those scales in the right direction, and present this chapter in service of that belief.

Works Cited

#whatifdh2015 “TAGS Searchable Twitter Archive,” n.d. http://hawksey.info/tagsexplorer/arc.html?key=10C2c1phG1QywDmy4lG4mro6VBiv0UuZlLL_uZ8HFfkc&gid=400689247

ADHO. “Our Mission,” n.d. http://adho.org/

“ADHO Announces New Steering Committee Chair.” ADHO, n.d. http://www.adho.org/announcements/2015/adho-announces-new-steering-committee-chair

“All Models Are Wrong.” Wikipedia, September 20, 2015. https://en.wikipedia.org/w/index.php?title=All_models_are_wrong&oldid=681908687

Blevins, Cameron, and Lincoln Mullen. “Jane, John … Leslie? A Historical Method for Algorithmic Gender Prediction.” Digital Humanities Quarterly 9, no. 3 (2015). http://www.digitalhumanities.org/dhq/vol/9/3/000223/000223.html

Boyles, Christina. “#WhatIfDH2016 Made Space for Scholars Who Are Interested in the Intersection(s) between DH and Race, Gender, and Sexuality Studies?” @clboyles, July 1, 2015. https://twitter.com/clboyles/statuses/616080151365861376

Burton, John W. Culture and the Human Body: An Anthropological Perspective. Prospect Heights, Ill.: Waveland Press, 2001.

“centerNet,” n.d. http://www.dhcenternet.org/

Cohen, Dan. “Catching the Good.” Dan Cohen, March 30, 2012. http://www.dancohen.org/2012/03/30/catching-the-good/

“Conditionally Accepted.” Inside Higher Education, n.d. https://www.insidehighered.com/users/conditionally-accepted

“Conference.” ADHO, n.d. http://adho.org/conference

“Congrats, You Have an All Male Panel!” n.d. http://allmalepanels.tumblr.com/

“DH Dark Sider (@DHDarkSider) | Twitter,” n.d. https://twitter.com/dhdarksider

“DH Enthusiast (@DH_Enthusiast) | Twitter,” n.d. https://twitter.com/DH_Enthusiast

“Disrupting the Digital Humanities.” Disrupting the Digital Humanities, n.d. http://www.disruptingdh.com/

Diversity in DH @ THATCamp. “Toward an Open Digital Humanities,” January 11, 2011. https://docs.google.com/document/d/1uPtB0xr793V27vHBmBZr87LY6Pe1BLxN-_DuJzqG-wU/edit?usp=sharing

Drucker, Johanna. “Humanistic Theory and Digital Scholarship.” In Debates in the Digital Humanities. University of Minnesota Press, 2012. http://dhdebates.gc.cuny.edu/debates/text/34

“Fight The Tower : Women of Color in Academia,” n.d. http://fighttower.com/

Ghilarducci, Teresa. “Why Women Over 50 Can’t Find Jobs.” Portside, n.d. http://portside.org/2016-01-18/why-women-over-50-can’t-find-jobs

“Global Outlook::Digital Humanities | Promoting Collaboration among Digital Humanities Researchers World-Wide,” n.d. http://www.globaloutlookdh.org/

Golumbia, David. “Right Reaction and the Digital Humanities.” Uncomputing, July 3, 2015. http://www.uncomputing.org/?p=1666

Howe, Tonya. “#whatifDH2016 Advocated for More Process-Oriented Liberal Arts Delegates?” Microblog. Twitter.com/howet, June 30, 2015. https://twitter.com/howet/statuses/616045260570030080

Hunt, Lynn. “Has the Battle Been Won? The Feminization of History.” Perspectives on History, May 1998. https://www.historians.org/publications-and-directories/perspectives-on-history/may-1998/has-the-battle-been-won-the-feminization-of-history

Lothian, Alexis. “THATCamp and Diversity in Digital Humanities.” Queer Geek Theory, n.d. http://www.queergeektheory.org/2011/01/thatcamp-and-diversity-in-digital-humanities/

Milen, Jeffrey F., Mitchell J. Chang, and Anthony Lising Antonio. “Making Diversity Work on Campus: A Research-Based Perspective.” Association American Colleges and Universities, 2005. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.2597&rep=rep1&type=pdf

Morrison, Aimée. “#WhatIfDH2016 Had as Many Women on the Stage as in the Audience? http://www.scottbot.net/HIAL/?p=41355 #dh2015.” Microblog. @digiwonk, June 30, 2015. https://twitter.com/digiwonk/status/616042963093835776

Mullen, Lincoln. Ropensci/gender: Predict Gender from Names Using Historical Data, n.d. https://github.com/ropensci/gender

Nowviskie, Bethany. “Asking for It.” Bethany Nowviskie, February 8, 2014. http://nowviskie.org/2014/asking-for-it/

———. “Cats and Ships.” Bethany Nowviskie, November 2, 2012. http://nowviskie.org/2012/cats-and-ships/

Ohio State University. “Diversity Action Plan,” n.d. https://www.osu.edu/diversityplan/index.php

Perkins, Yvonne. “International Researchers Value Work of Australian Libraries and Archives.” Stumbling Through the Past, July 20, 2015. https://stumblingpast.wordpress.com/2015/07/21/intnl_researchers_value_oz_libraries_archives/

Peterson, Helen. “An Academic ‘Glass Cliff’? Exploring the Increase of Women in Swedish Higher Education Management.” Athens Journal of Education 1, no. 1 (February 2014): 32–44.

Pomerantz, Shauna, Rebecca Raby, and Andrea Stefanik. “Girls Run the World? Caught between Sexism and Postfeminism in the School.” *Gender & Society *27, no. 2 (April 1, 2013): 185-207. doi:10.1177/0891243212473199

Posner, Miriam. “What’s Next: The Radical, Unrealized Potential of Digital Humanities.” Miriam Posner’s Blog, July 27, 2015. http://miriamposner.com/blog/whats-next-the-radical-unrealized-potential-of-digital-humanities/

“Postcolonial Digital Humanities | Global Explorations of Race, Class, Gender, Sexuality and Disability within Cultures of Technology,” n.d. http://dhpoco.org/

Steiger, Kay. “The Pink Collar Workforce of Academia: Low-Paid Adjunct Faculty, Who Are Mostly Female, Have Started Unionizing for Better Pay—and Winning.” The Nation, July 11, 2013. http://www.thenation.com/article/academias-pink-collar-workforce/

Terras, Melissa. “Disciplined: Using Educational Studies to Analyse ‘Humanities Computing.’” Literary and Linguistic Computing 21, no. 2 (June 1, 2006): 229–46. doi:10.1093/llc/fql022

———. “Peering Inside the Big Tent: Digital Humanities and the Crisis of Inclusion.” Melissa Terras’ Blog, July 26, 2011. http://melissaterras.blogspot.com/2011/07/peering-inside-big-tent-digital.html

“THATCamp Southern California 2011 | The Humanities and Technology Camp,” n.d. http://socal2011.thatcamp.org/

“University of Venus.” Inside Higher Education, n.d. https://www.insidehighered.com/blogs/university-venus

U.S. Department of Education, National Center for Education Statistics. “Race/ethnicity of College Faculty,” 2015. https://nces.ed.gov/fastfacts/display.asp?id=61

Weingart, Scott. “Acceptances to Digital Humanities 2015 (part 4).” The Scottbot Irregular, June 28, 2015. http://www.scottbot.net/HIAL/?p=41375

———. “The Myth of Text Analytics and Unobtrusive Measurement.” The Scottbot Irregular, May 6, 2012. http://www.scottbot.net/HIAL/?p=16713

Wernimont, Jacqueline. “Build a Better Panel: Women in DH.” Jacqueline Wernimont. Accessed January 14, 2016. https://jwernimont.wordpress.com/2015/09/19/build-a-better-panel-women-in-dh/

———. “No More Excuses.” Jacqueline Wernimont, September 19, 2015. https://jwernimont.wordpress.com/2015/09/19/no-more-excuses/

Winslow, Sarah. “Gender Inequality and Time Allocations Among Academic Faculty.” Gender & Society 24, no. 6 (December 1, 2010): 769–93. doi:10.1177/0891243210386728.

Zafrin, Vika. “#WhatIfDH2016 Created Guidelines for Reviewers Explicitly Addressing Diversity & Providing Guidance on Reducing One’s Bias?” Microblog. @veek, June 30, 2015. https://twitter.com/veek/status/616041712163680256

———. “#WhatIfDH2016 Encouraged ALL Community Members to Reach out to Women & POC and Solicit Paper Submissions?” Microblog. @veek, June 30, 2015. https://twitter.com/veek/statuses/616041931949363200

———. “#WhatIfDH2016 Expanded ConfTool Pro to Record Reviewer Biases along Gender, Race, Country-of-Origin GDP Lines?” Microblog. @veek, June 30, 2015. https://twitter.com/veek/statuses/616043562799636481

Notes:

  1. Each author contributed equally to the final piece; please disregard authorship order.
  2. See Melissa Terras, “Disciplined: Using Educational Studies to Analyse ‘Humanities Computing.’” Literary and Linguistic Computing 21, no. 2 (June 1, 2006): 229–46. doi:10.1093/llc/fql022. Terras takes a similar approach, analyzing Humanities Computing “through its community, research, curriculum, teaching programmes, and the message they deliver, either consciously or unconsciously, about the scope of the discipline.”
  3. The authors have created a browsable archive of #whatifDH2016 tweets.
  4. Of the 146 presentations at DH2011, two standout in relation to diversity in DH: “Is There Anybody out There? Discovering New DH Practitioners in other Countries” and “A Trip Around the World: Balancing Geographical Diversity in Academic Research Teams.”
  5. See “Disrupting DH,” http://www.disruptingdh.com/
  6. See Wernimont’s blog post, “No More Excuses” (September 2015) for more, as well as the Tumblr blog, “Congrats, you have an all male panel!”
  7. Miriam Posner offers a longer and more eloquent discussion of this in, “What’s Next: The Radical, Unrealized Potential of Digital Humanities.” Miriam Posner’s Blog. July 27, 2015. http://miriamposner.com/blog/whats-next-the-radical-unrealized-potential-of-digital-humanities/
  8. [Link to the full public dataset, forthcoming and will be made available by time of publication])
  9. We would like to acknowledge that race and ethnicity are frequently used interchangeably, though both are cultural constructs with their roots in Darwinian thought, colonialism, and imperialism. We retain these terms because they express cultural realities and lived experiences of oppression and bias, not because there is any scientific validity to their existence. For more on this tension, see John W.Burton, (2001), Culture and the Human Body: An Anthropological Perspective. Prospect Heights, Illinois: Waveland Press, 51-54.
  10. Weingart, S.B. & Eichmann, N. (2016). “What’s Under the Big Tent?: A Study of ADHO Conference Abstracts.” Manuscript submitted for publication.
  11. We used the process and script described in: Lincoln Mullen (2015). gender: Predict Gender from Names Using Historical Data. R package version 0.5.0.9000 (https://github.com/ropensci/gender) and Cameron Blevins and Lincoln Mullen, “Jane, John … Leslie? A Historical Method for Algorithmic Gender Prediction,” Digital Humanities Quarterly 9.3 (2015).
  12. For a breakdown of specific numbers of gender representation across all 96 topics from 2013-2015, see Weingart’s “Acceptances to Digital Humanities 2015 (part 4)”.
  13. While ADHO’s annual conference is usually the largest annual gathering of digital humanists, that place is constantly being vied for by the Digital Humanities Summer Institute in Victoria, Canada, which in 2013 boasted more attendees than DH2013 in Lincoln, Nebraska.